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Equations in an Exterior Domain in R? and

Their Applications to Scattering Problems
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Abstract

Uniform resolvent estimates for stationary Schrédinger and dis-
sipative wave equations in a two-dimensional exterior domain are
reported. The smoothing estimate for the corresponding evolution
equations and the principle of limiting amplitude for dissipative
wave equations are also obtained.

1. Introduction and Results

Recently, Mochizuki proved the uniform resolvent estimate for stationary
magnetic Schrédinger equations in RY or @ € RY (the exterior domain of a
star-shaped obstacle) with N = 3 ([15] and [16]). He also obtained smoothing
estimates for the corresponding evolution equations. Mochizuki’s proofs were
based on Hardy-type inequalities related to the radiation conditions (= referred
to as Mochizuki’s inequality).

However, the corresponding result in a two-dimensional exterior domain was
left as a problem for future study.

This paper generalizes Mochizuki’s inequality and presents uniform resolvent
estimates in the exterior domain in R?. Details of the derivations and their
proofs will be published elsewhere.

Assume that the number of dimensions N > 2. Let  be a whole space RY
or an exterior domain of a star-shaped obstacle in RY satisfying 0 ¢ Q. Here,
Q is star-shaped if (£,n) < 0 for any « € Q and for any unit outer-normal n of
002. Assume that the function w is a solution to a Schrodinger equation of the

form
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(-A+V(z) - f<c2) u(z) = f(z), ze€Q, u(z) =0, z€09Q, (1)

where V(x) is a real valued C*(Q) — function and x € C denotes a spectral
parameter.
Let 7 = |z| and define the operator D as

Diu=
r U Ur + o

v

uFiku (£Sk 2 0),

where u, = (Vu, 2) ((-,-) denotes the usual L*-norm).
These operators are introduced in Ikebe-Saito [3] and Mochizuki [12]. We
define the weighted L?-norm and the weighted L?-space L2, by

llulle, = /QW(:C)IU(OS)Ide, Ly = {ul]Jullw < oo}

for some non-negative weight function w(x)
The weight function adopted in this paper must satisfy the following condi-

tion.
Condition 1.1. ¢ = ©(r) is a non-negative L' function of v satisfying @, < 0.

Example 1.1. The two candidate functions are (14 1)"'7° (§ > 0) and (e +
r)~! {log(e+7)} 17 (5> 0).

Assumption 1.1. We assume that |V (z)| < Cr~? and (rV(z)), < 0 for some
¢>0.

These considerations lead to the following theorem:

Theorem 1.1. Let u be a solution of (1) with radiation condition ||Diful|, <

oo. If the function V (x) satisfies Assumption 1.1, and ¢ satisfies

inf <_%> > % (ro = dist(z,09)),

r2rg 12
then
+
6P [ullf + llul2 ex + IDFullz S CllfIR2. (2)
®

holds for some constant C' > 0 independent of k.
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Remark 1.1. (i) With regard to [15] and [16], this theorem is meaningful if
and only if N = 2. If N 2 3, Mochizuki’s result is sharper than our result.
(43) If the potential function V(x) takes the form

V@) = 2 + V()

1
for some constant Vo = 1 and for some function Vs(z) satisfying Assumption
1.1, the usual resolvent estimate

6P [ull{rry-1-5 < Ol IEsryres (6> 0) 3)

is easily proved for N = 2.
(#i7) Especially, the following inequality is obtained from (2):

I3

lullZ e < ClIfII%2-
©

The left-hand side of this inequality is independent of the spectral parameter k.
Therefore, we refer to this estimate as the uniform resolvent estimate. For the
optimal result under N 2 3, the reader is referred to [15] and [16].

(iv) Unlike (3), this inequality violates the dual relationship between the weight
2

functions of both sides of (2), i.e., ¢ and .
P

(v) For example, taking o(r) = (14+1)717% (§ > 0), inequality (2) gives

+
|H|2||UH?1+T)*1*5 + HU||?1+T)*3*5 + HDT “||?1+r)*1*6 < C||f||?1+7‘)3+5'

Throughout the whole space @ = RY, the usual (local) resolvent estimate
(3) with C = C(k) > 0 has been established by Kuroda [7] and Agmon [1]
for V.= 0. The global version of this estimate (in which the constant C' is
independent of x) has been proven by Mochizuki [13]. The uniform resolvent
estimate and its related smoothing estimate in R have also been demonstrated
by Yafaev [24] for the case V # 0.

To prove Theorem 1.1, we rely on Hardy-type inequalities related to radiation

conditions:
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Proposition 1.1. Assume that N 2 1, and let v be a function in C§°(Q2). Let
a satisfy a € (0,1] and ¢ = ¢(r) € C*(Q) be some weight function. Then the
following two inequalities hold:

2

- N -1
(i) vr v . > (ol (@)
(@) [|DF0]|? 2 £nl[vlBus + ll0]13,. )

where he(r) = _age(r)  a(a —2 1)¢.
r r

Remark 1.2. (i) Mochizuki [15], [16] established the above inequality (5) for a
specific weight function (see [15] Lemma 9).
(i2) Inequalities (4) and (5) also hold under the following change of operator

Vv — Vv = Vo +im(z)v, v — Vv - %

where m(x) = (mix), ma(x), -+ ,mn(x)) and each m;(z) (j =1,2,--- ,N) isa
real-valued C' — function. The operator V., appears in studies of the magnetic
Schrodinger operator. In [15] and [16], inequality (5) is established for this
operator when N 2 3.

Here, we present a rationale for the proof of Theorem 1.1 rather than a
rigorous analysis (for more precise discussion, see the forthcoming paper). The
non-negative terms identified by the previous authors (see e.g., [3], [12], [13],
[14], [15], [16], [18] and [20]) are not omitted in our arguments, but are estimated
more precisely using the inequalities in Proposition 1.1. To estimate the term
||u|\i¢7r, we utilize (5) with @ = 1/2. To estimate the term i%f@HuH% (£Sk 2
0), we apply (4) with a = 1. Now, we can compensate the term

(N=1)(N-3)
4r?
which remained negative, and therefore inestimable for NV = 2 in previous anal-

ysis.
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Once Theorem 1.1 is established, the smoothing estimates® for the corre-
sponding evolution equations can be deduced from [5], [15] and [16].
Let L = —A 4 V(z) be the Schrédinger operator and consider the following

equations:
tug — Lu =0, w(0) = f € L*(Q), (6)
iug — /L +m2u =0, u(0) = f € L*(Q), (7)
uge + (L+m*)u=0, u(0)=f1 € H(Q), uw(0) = fo € L*(), (8)
where m > 0 and H' is the completion® of C§° with respect to the norm ||V-||2,.

Theorem 1.2. Assume that N 2 2, V(x) satisfies Assumption 1.1 and V = 0.
Let the weight function ¢ satisfy

Lezrer <o
2= o =

for some C > 0. Then for the function defined by
_ [ZPr
hr) = /=
the following inequalities hold:

(2) If u is a solution of (6) or (7), then

+oo
[ il < s
(#2) If w is a solution of (8), then

+oo
[ holiaa < cui.
0

where E = H' x L2

Remark 1.3. Under the condition V' 2 0, the Schriodinger operator L has a
self-adjoint extension (the Friedrichs extension; see [15] and [16] for details).

2In general, if the solution becomes smoother than the initial data for some differ-
ential equation, we say that a smoothing effect occurs. The inequality which means
this effect is called the smoothing estimate.

3The space so that the Cauchy sequence converges with respect to this norm.
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Finally, consider the initial boundary value problem for the dissipative wave

equation of the form

wi — Aw + b(2)we = f(x)e™ ™, (2,t) € A xR,
(9)
=0, z€9Q, w=0, (z,t)€INxR

w|t:0 :wt|t:o

and its stationary equation
(—A —irb(z) — /{2) u(z) = f(z), =€, u=0, z€dQ, (10)
where f € L27~_2 and the function b(x) satisfies
@
(B)  [b(@)] < bop(r)r™"

for some ¢ satisfying Condition 1.1 and for some bo € [0,1/3).

The uniform resolvent estimate for (10) is proven identically to Theorem 1.1:

Theorem 1.3. Assume N 2 2 and inequality (B) above. Assume also that the

function ¢ satisfies

. _Tror 1+bo o
7}gnfo ( - ) > 2(1=3b0) (ro = dist(xz, 09)).

Then if (10) is solved with radiation condition ||Difu||} < oo, the following

inequality holds
|62 [l 3 + [Jul 2 ex + (| DFull? + /{m {(~@m}uadS S C|fI. (1)
=
where n denotes the unit outer normal to the boundary 0f).

By using this theorem, the following theorem (on the principle of limiting
amplitude for dissipative wave equations) is proved as an extension of Mizohata-

Mochizuki’s result [11].

Theorem 1.4. Under the conditions of Theorem 1.8, and given solution w of

(9) and u of (10), we have

lw (-, t)e™ —u()|% =0 (¢t — +o0).
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Remark 1.4. (i) Mizohata-Mochizuki [11] treated the case Q = R® and non-
negative b(z) satisfying b(x) < Cr~2 forr 2 R > 0 without imposing a smallness
condition. In Theorem 1.4, the decay condition at infinity is relazed in Q C RY
with N 2 2 and |b(x)| < bo(1 +7)727% if we select ¢ = (1+7)"17° (§ > 0).

(i1) Under the conditions of Theorem 1.3, the principle of limiting absorption
for the operator pencil L(k) = —A — ixb(z) — &> follows; namely,

lim L(k)"'feL?

Sk—+0

for any f € Lf%_l ([18]). Moreover, the scattering states also exists ([13],

[19], [20])-

For the proof of Theorem 1.4, we can follow the argument by Roach-Zhang
[22]. If it states in more detail, some energy estimates for (10) are derived from
inequality (11). These estimates are useful to prove Theorem 1.4. In the final
stage of the proof, we adopt the argument in [11].

Other results about the dissipative wave equations (9) with f = 0 are treated
in references [17], [4] and [6].

The remainder of this section is devoted to relevant terms and their back-
grounds.

Given a (possibly unbounded) operator L, if the operator L —¢ has a bounded
inverse for some & € C, the resolvent of L is defined by (L —¢)~". For the eigen-
value problem (L — &)u = f, it is important to obtain the estimate |€]||u||w, <
C| f||w, for weight functions w; and ws in mathematical scattering theory. This
problem is equivalent to estimating |€]]] (L — &)™ fllwy < C||f]|ws, which we
call the resolvent estimate. Widely used weight functions for the Helmholtz
equation, where L = —A, are w1 = (1 4+7)"17% wy = wy? = (14 r)**° for
some ¢ > 0. See [7], [14] or [24].

The radiation condition proposed by Sommerfeld [23] and Rellich [21] is a
class of boundary conditions at infinity that guarantees the unique solutions to

the Helmholtz equation (see also [14]).

If the operator depends on the spectral parameter £ € C as A(§) = Z§j Aj
j=0
for some operators A;, A(€) is called an operator pencil (see for example, ref-
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erence [9]). An example is the quadratic operator pencil L(k) in Remark 1.4

(i4).

2. Proof of Proposition 1.1 and Related Inequalities
In this section, we prove Proposition 1.1 and the related inequalities derived
by the same methods.

[Proof of Proposition 1.1.] (i) By direct calculation, we obtain

0 § ¢’Ur+ _l’U—ag
r
N-1] § 3
= oot S| - (S0P )+ S+ TR0
s r r r r

Integrating both sides of this inequality in €2, we obtain the desired results (4).

(i1) By a similar procedure, we also obtain

o
IIA

'U2
(;S’D;Ev—a—’
"

v]?.

2 r -1
= oD — V- (?W%) ¥ %m%‘b\vf + %W 4 de—1)e,

72
Integrating both sides in €2 yields the desired results (5). O

Remark 2.1. (i) As mentioned in Remark 1.2(i), Mochizuki proved inequality
(5) in [15] and [16] by an alternative method.
(i) The above proofs generalize the direct proof of the usual Hardy inequality

/Qh)(%)ﬁdxé <ﬁ>2/§2|vr($)|2dl” (12)

provided in the footnote of the textbook by Mizohata [10].
We can generalize Mizohata’s proof as follows.

Lemma 2.1. Assume N 2 1 and f = f(r), g = g(r) € C'. Then for any
v € C§°, it holds that

2 2
llvlle = [lorll72,

where

0= fNT_lfg*(fg)r*g?
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[Proof.] Direct computations give

o
A

|for — gv|” = f2o7 — 2fgv,0 +g2v2
N —
= fil- (fgv *) + 7fgv + (fg)rv® + g*v°

Integrating both-sides of this equation by parts, we obtain the desired result. O

[An elementary proof of (12).] Choosing f = 1 and g = ar™! for some a, we
can easily verify that ¢ = —a {a — (N — 2)} 2. Thus, choosing a = (N —2)/2,
we retrieve the usual Hardy inequality (12). O

As another application, consider the two—dimensional Hardy inequality:

Corollary 2.1. Assume N = 2. Then for any v € C§°, the following inequali-
ties hold:

v(z)]? 4
; —l r(2+)5| dx < —52 3 / |’U7«(CL‘)|2d{E7 (13)

[v(z </
/Qrz{logm de <4 [ |on(2)2dx, (14)

where Q denotes the exterior domain of R?, 6§ > 0 is some constant, ro =

dist(z,0), R is a number satisfying Rr > 1.

Remark 2.2. Inequalities (13) and (14) are presented in Leis [8] and Dan-
Shibata [2], respectively.

Here, these proofs are simplified along with the proof of Lemma 2.2.

[Proof of Corollary 2.1.] Choosing f(r) = %/ and g(r) = gr_l_‘s/Q with
2
0 > 0, we have p(r) = %77276. Noting r = ro, (13) follows.

1 1

Choosing as f(r) = 1 and g(r) = 2 Tog(Rr)’ we find p(r) = T2 {log(RO ]2

which yields (14). O
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