グラビア

病理組織像から分子イメージングへの架け橋

亀山 孝二 町田 稔 恩田 宗彦 内藤 善哉日本医科大学大学院医学研究科統御機構病理学分野(病理学第2教室)

Molecular Imaging Analysis on the Basis of Histopathological Image

Kohji Kameyama, Minoru Machida, Munehiko Onda and Zenya Naito

Integrative Pathology (Department of pathology II) Graduate School of Medicine

図1 冠動脈の硬化病変の縦断面観察(組織化学染色と偏光顕微鏡を用いた病変の程度の比較)

写真は冠動脈硬化病変の中等度変化例(a,b)と高度変化例(c,d)を示す. 写真左(偏光観察像)と右(通常光観察像)の(a,b)と(c,d)は各々同一の標本 である.通常光が透過しない厚さ(50µm)では,さらに濃い有色の色素で染色されると 通常の顕微鏡では観察が困難となる(b,d).組織内の偏光性が異なる成分や組織化学的 方法では,前処理や固定,組織の薄切による影響が生じる事があり,偏光顕微鏡観察では, この様な影響を回避することができる.特に脂質成分に関しては液晶もしくは結晶の判別 等が可能となり,組織化学的方法によるコレステロール染色でも,黄色から赤褐色のコレ ステロール結晶状態が観察可能となる.左下段(c)では内膜肥厚の顕著な領域の中膜側 に多量のコレステロール結晶(Cho)の蓄積(赤矢印)が観察される.(c)内膜側では膠 原線維性被膜(白矢印)は不均一な肥厚を示し,脂質が蓄積する過程で不均一な状態が偏 光法で観察される. 日医大医会誌 2005;1(3)

図3 リポソーム構造カルシウム融合膜モデルの レーザー顕微鏡像と画像計測の高速フーリエ変換像 (3次元強度分布像)

写真 A は実験的に脂質とコレステロールを用い て作成したリボソーム構造(LS)を示す.写真 B はこのリポソーム構造(LS)にカルシウムを添加直 後に形成した凝集塊の像(LS+Ca)をレーザー顕 微鏡で観察したものである.レーザー顕微鏡像(図 3 A, B)のフーリエ像(AF, BF)は図2A, Bの レーザースポット像とは異なる光情報を有する.し かし,凝集塊の形成に伴う構造状態は組織類似の形 状情報を示している.このような形状情報に関する 解析は,さらに成分情報や分子イメージングにつな がる可能性がある.

図4 多分子系(リポソーム)と単一分子(蛋白)の 相互作用や同一分子変性の観察

リポソーム構造は通常光の顕微鏡では観察困難であ るが,暗視野顕微鏡では観察可能となる.左上の写真 Aは,400倍視野でのホスファチジルセリン リポソー ム (PS liposome)の観察像を示す.他の写真 B, C, D の3枚は, 各種条件下で生じるタンパク質の変化を観 察したものである. β ラクトグロブリン蛋白(β)はあ る変性条件下でβシート構造を示す事が知られてい る. 写真 B (β + heat) は熱変性した β ラクトグロブリ ン蛋白 (β) を暗視野観察したものである.通常光の顕 微鏡では観察が困難だが,暗視野観察では,輝度の点 在として観察される(写真 B). 写真 C(β+PS) は暗 視野に蛍光を重ねた2重観察(F1)で, $PS \geq (\beta)$ の 会合により形成された脂質 蛋白の凝集塊が観察され る. 写真 D (β+EtOH)は, コンゴーレッド色素を含 むエタノール(EtOH)溶液で生じた β ラクトグロブリ ン蛋白の構造変化を暗視野に蛍光を重ねた2重観察(F 2)したものである.