
Introduction

Nociception involves multiple steps from the

peripheral receptor, the afferent nerve transmitting

the impulse to the spinal cord, the signal processing

in the dorsal horn, with inhibitory and facilitatory

elements and finally transmission to higher cerebral

centres where the peripheral nociceptive stimulus is

perceived as pain. Development of new analgesic

drugs is a long process. Basic physiological research

reveals receptors and transmitter substances that

may be involved in nociception. These can then be

targeted for further research into analgesic drugs

that specifically inhibit or reduce the responses

revealed by the basic research. At this stage usually

only receptors or cellular models are involved. The

next step involves spinal cord slices or spinalized

animals（usually rats）where the substances can be

tested in more complex models where further

elements of the nociceptive system can be included.

Finally the substances can be tested in intact

animals where the total effect of a substance on all

the complex interactions of the nociceptive system

can be evaluated. If then, after toxicological testing

the substance still seems promising, human phase 1

clinical studies may be started. Often clinical studies

are initiated directly based on the animal data.

However this may be a questionable procedure.

Problems may arise when transferring animal

results to humans.

Different species may show different reactions,
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receptor populations and the relative contributions

of different aspects of the nociceptive system may

be different. Secondly the final investigations on the

intact animals use experimental pain models. Animal

experimental pain models are usually simple models

employing either heat or pressure pain, but do

experimental pain models reflect the clinical pain?

The answer is clearly no! Clinical pain is not a

simple entity, but very complex and multi-factorial,

and can therefore not be described with one simple

model. The aim of this chapter is firstly to supply

the clinician with background knowledge on

experimental pain models, their advantages but also

their limitations. Secondly we want to promote the

understanding that human experimental pain models

may expand our knowledge in a way which may not

be possible with traditional clinical testing.

Basics of experimental pain

The stimulus and the measured response

In experimental pain we need a stimulus that will

elicit pain and a measure of the response to the

painful stimulus（for further information see1）. Let us

first examine the stimulus.

Ideally an experimental pain stimulus should have

the following characteristics2,3.

・Non invasive, and produce no tissue damage

・Specific : measure pain and not other sensations

・Sensitive : be able to measure pain within a range

which is ethically acceptable and physiologically

relevant

・Measurable , and show a relation between stimulus

and pain intensity

・Variable from zero to maximal tolerable levels

・Reproducible , and frequently repeatable with no

change in the response over time

Experimental pain stimuli may be electrical,

thermal, mechanical, ischemic or chemical. None of

these fulfil the requirements for the ideal pain

stimulus. Electrical stimulation diffusely stimulates

several sensory modalities, heat and ischemia may

produce sensitisation of peripheral tissue if

frequently repeated. Chemical stimulation can often

only be applied once.

The response to a painful stimulus can be assessed

by psychophysical, electrophysiological, and imaging

techniques. Imaging techniques can be used to

investigate the central pain pathway and structures

related to pain processing.

Psychophysical assessment

In psychophysical assessments the relation between

the intensity of a stimulus and the evoked perception

is described. They can roughly be divided in

stimulus dependent and response dependent methods

（see reviews2,4）.

In the stimulus dependent method the stimulus

intensity is adjusted until a predefined threshold

is reached. Three sensory thresholds can be defined :

・Perception threshold―the lowest stimulus intensity

perceived.

・Pain detection threshold―the lowest stimulus intensity

perceived as painful.

・Pain tolerance threshold―the highest stimulation

intensity tolerated.

In the response dependent method series of fixed

stimulus intensities are applied. The perceived

intensity of each stimulus is then scored. Scoring can

be performed using a visual analogue scale（VAS）,

a verbal descriptor scale（e.g. mild, distressing,

horrible, or excruciating）, magnitude estimation or

cross-modality matching（see review4）.

Electrophysiological assessment

Electrophysiological assessments have the

advantage that they do not rely on a subjective

response, and can under certain conditions be

employed under general anaesthesia. The response

is quantitative, but the main problem is that they

may not always be a correlate of pain intensity（se

section“interpreting the response”）. Two main

electrophysiological methods are used: evoked

potentials and nociceptive reflexes5－20.

Temporal and spatial summation（Fig. 1）

The evoked responses to a painful stimulus can be

highly dependent on the stimulation modality,

duration and area stimulated. Applying a nociceptive

stimulus to a large area, and thereby stimulating

more nociceptive afferents, will elicit a more intense

pain then if the same stimulus is applied to a smaller
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area. This phenomenon is termed spatial summation.

Spatial summation has been observed within the

same dermatome and between dermatomes21.

Repeating nociceptive stimuli may also cause a

central summation of the afferent stimuli22 and

increase the response. This is termed temporal

summation. For heat stimuli the repetition frequency

has to be above 0.3 Hz23. For electrical stimulation

the frequency is intensity dependent24. Temporal

summation can be assessed by psychophysical pain

ratings or by increases in the amplitude of the

nociceptive reflex elicited by the repeated stimuli.

Short lasting stimuli and stimuli applied to small

areas are inhibited to a larger extent by some

anaesthetic drugs than long lasting stimuli or stimuli

covering larger areas8,9,12,17,25－28 eliciting temporal or

spatial summation mechanism. This demonstrates

the importance of temporal or spatial summation

mechanisms.

Interpreting the measured response

We cannot directly measure pain, but we can

measure different components which together are

important for the pain experienced. The perceived

pain intensity and quality can be recorded in awake

humans, and this is the main advantage with human

compared to animal models. In animals invasive

techniques, like direct recordings from the spinal

cord dorsal horn, can be employed. Such techniques

are obviously not possible in humans. In humans we

have to rely of indirect measures of nociception.

These are however often complex with non-

nociceptive elements that may also be influenced by

the substance tested.

Let us use an example to illustrate the problems

that may arise in interpreting the response. Zbinden

and co-workers29,30 examined the effect of the

inhalational anaesthetic isoflurane on two different

responses to painful stimuli. They found that

isoflurane could suppress the movement response to

the painful stimulus, but not the haemodynamic

reaction. Isoflurane decreased the initial pre-stimulus

blood pressure in a dose related manner, but did not

attenuate the post-stimulus increase in blood

Fig. 1 Temporal summation can be elicited by a series of repeated stimuli. If a stimulus: repeated
e.g. once per second the pain evoked（VAS）will increase. Spatial summation is evoked if
larger areas are activated. The pain rating（VAS）increase for increased area of stimulation.
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pressure. So Zbinden and co-workers applied a

painful stimulus, recorded two different responses

and thereby obtained two completely different

results. Isoflurane could suppress one response, but

had no effect on the other response. Which response

is then a measure of analgesia? We get further

confused if we then add a known analgesic e.g. an

opioid. An opioid will reduce the concentration of

isoflurane required to suppress a motor response31,32

and will also reduce the haemodynamic response33.

But the question remains: Is isoflurane an analgesic?

We have no objective measure of pain, or of the

activity of the nociceptive system. What the

example illustrates is that we have to employ

indirect measures in an attempt to quantify the

activity of the nociceptive system. But when we use

these indirect measures we also measure the effects

of isoflurane on the non-nociceptive components of

the response. When we use the motor-response to a

painful stimulus, isoflurane could have an effect on

the nociceptor, the afferent nerve, spinal synapses or

interneurones, the efferent motor-fibre or the motor-

endplate. So we are not just measuring the effect on

nociceptive pathways. However as we pointed out,

humans can rate the perceived pain. Let us illustrate

the importance of the subjective rating with another

example. Arendt-Nielsen18 showed that the ampli-

tude of the long latency evoked vertex potential to

argon laser nociceptive thermal stimulation corre-

lated with the intensity of the perceived pain. With

this method an analgesic effect of alfentanil34

ibuprofen35, paracetamol36, codeine37, and epidural

morphine38 has been demonstrated. The evoked

potential would therefore seem to be a good

measure for analgesic effects. In a later study we

showed that sub-anaesthetic isoflurane concentrations

（0.10～0.26 vol％ end-tidal）decrease the amplitude

of the evoked vertex potentials to painful laser

and intracutaneous electrical stimuli10. This could

be interpreted as an analgesic effect of isoflurane.

But isoflurane produces a similar reduction in the

amplitude of non-pain related auditory evoked vertex

potentials recorded with the same paradigm, and

did not reduce the perceived pain. Therefore the

amplitude reduction may not reflect an analgesic

effect, but could be due to a general non-specific

effect of isoflurane on cerebral neuronal activity.

This is supported by the effects of the hypnotic

propofol and the opioid alfentanil on the evoked

potentials to painful and non painful stimuli. Propofol

and alfentanil both reduce the amplitude of evoked

vertex potentials to painful laser and intracutaneous

electrical stimulation, but both also reduced the

amplitude of non-pain related auditory evoked

potentials9. The hypnotic propofol did not change

the perceived pain to the painful laser and electrical

stimulations, whereas the analgesic alfentanil, as

expected reduced the perceived pain.

So in summary the stimulus used should induce a

distinct pain, and it should preferably elicit temporal

and�or spatial summation mechanism. Subjective

pain ratings should be used whenever possible

especially when indirect response measures are

recorded. If possible, the effect of non-painful stimuli

on the indirect measure should also be recorded, in

order to control for non-nociceptive effects on the

indirect response.

The importance of multi-modal multi-structure sti-

mulation and assessment

When we study pain in humans we are in reality

investigating a complex multiple input-multiple

output system, because pain is subjective and

multidimensional（se review by Arendt-Nielsen39）. If

we just investigate the reaction to a single

nociceptive input the results will only represent a

very limited fraction of the pain experience.

Furthermore anaesthetic and analgesic drugs may

have differential effects on the different pathways of

the nociceptive system. So only a multi-dimensional

sensory testing involving several stimulation

modalities and a multi-dimensional assessment

technique may allow us to draw comprehensive

conclusions. Each added stimulation and assessment

modality will increase the amount of information

obtained in a study, but this will also increase the

difficulties of interpreting the data as we have

illustrated above. In many animal and human

experimental studies often only one stimulation

modality is used and only one assessment technique.

The following example illustrates the importance of

using multi-modal stimulation and assessment
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techniques.

We have shown that sub-anaesthetic concentrations

of propofol will increase the threshold of the nociceptive

reflex to single stimulations9. Comparing this result

with earlier studies using a similar stimulation modus

（the flexor reflex）5,40, could let us to conclude that

propofol has an analgesic effect. But the threshold

of the nociceptive reflex to repeated stimulations

（eliciting temporal summation mechanisms）is not

effected by propofol9, indicating that propofol with

the repeated stimulations does not have an analgesic

effect. However a hyperalgesic effect of propofol is

indicated by a reduced pain tolerance to mechanical

pressure9. So if we had only used one of these

stimulation paradigms we could be lead to 3 very

different conclusions. One that propofol has an

analgesic effect, the second that propofol has no

analgesic effect, and the third that propofol induces

hyperalgesia!

The opposite effect of isoflurane and ketamine on

the nociceptive reflex to single and repeated

stimulations is a further example. Isoflurane

increases the threshold for the reflex to single

stimulations, but not the threshold to repeated

stimulations8. Ketamine has no effect the threshold

for the reflex to single stimulations, but increases

the threshold to repeated stimulations41. So what do

these results indicate? Is isoflurane an analgesic, is

ketamine, are both or none of them? If we expand

the experimental testing and include further painful

stimulation modalities, we can demonstrate that

isoflurane has no or at best only a very weak

analgesic effect10,42, and that ketamine has an

analgesic effect17,41. This also indicates that the

repeated stimulations eliciting temporal summation

are more“robust”in that they are little influenced

by sedation9.

Recently Curatolo and co-workers showed that the

same electrical stimulation produced markedly

different results when the stimulation was applied

intramuscular compared to transcutaneous43 .

Remifentanil caused a higher increase in the

muscular pain thresholds than in the cutaneous pain

thresholds. So we now have to include also a multi-

structure stimulation and assessment technique.

Human experimental pain and

anaesthetic�analgesic drugs

In the clinical situation conditions are not standard

because the patients have coexistent diseases, and

operations vary in type and extensiveness. The

emotional, psychological and cultural factors vary,

and a pathological re-organisation of the nociceptive

system due to chronic pain may be present.

However in the experimental setting controlled

conditions can be achieved. The stimulus intensity,

duration and modality can be defined and

kept constant over time, and the psychophysical

and physiological responses can be quantified.

Furthermore the patient or volunteer can be used as

his�her own control thereby minimising inter

individual response variation, and variation over

time.

But are experimental data relevant for the

clinician? In experimental volunteer studies the

psychological�emotional aspects cannot be simulated.

Experimental pain usually involves cutaneous

stimuli, whereas clinical pain usually involves deep

structures and an inflammatory response is present.

Recently experimental models have been developed

inducing deep pain（intramuscular and visceral

pain）and an inflammatory reaction. A main

challenge for the future is to develop experimental

pain models more closely reflecting clinical pain.

Evaluating anaesthetic and analgesic drugs

We have above stressed the importance of multi-modal

and multi-structure stimulation and assessment

techniques. No single experimental pain test will

be applicable for all classes of drugs. A battery of

pain tests covering different pain modalities, pain

mechanisms and structures is therefore imperative.

This is especially true when new drugs or combinations

of drugs are tested. With the different pain modalities

and stimulation paradigms an analgesic profile for

different classes of drugs may be established.

Possible mechanisms of action of the investigated

drug may thereby be indicated. The effect of

some anaesthetic drugs on cutaneous experimental

pain tests are summarised in the following table.
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The differential effect of these drugs on different pain

modalities is illustrated.

Peripheral and central hyperexcitability play a

very important role in acute and chronic pain44－48.

But in spite of an enormous increase in our

knowledge on receptors and mechanisms in

nociception, we still do not know how to prevent

and treat this hyperexcitability. Should we inhibit

sensitisation of the peripheral receptor, block

afferent nociceptive input, spinal hyperexcitability,

or central modulation? Considering the large

number of receptors, pathways and mechanisms

involved in nociception, it is unrealistic to believe

that a single drug or intervention will be able to

block or attenuate all of these processes. Most

probably we need to use a combinations of drugs

with effects on different mechanisms and

receptors―the concept of balanced analgesia47,49. But

which drugs should we use and what is the optimal

combination? Recently Curatolo and co-workers50

have described a stepwise optimisation procedure

for drug combinations. Experimental human pain

models will probably play an important role in

expanding our understanding on the effects of

anaesthetic drugs combinations on nociceptive

mechanisms in humans. This knowledge can then

help us to develop and test therapeutic regimes in

patients with acute and chronic pain.

Regional anaesthetics and analgesics

Sensory assessment of regional analgesia ,

including experimental pain models, has recently

been reviewed by Curatolo and co-workers51. In this

section we will illustrate with some examples how

experimental pain models have expanded our

knowledge with clinical impact.

In an early study, Arendt-Nielsen and co-workers26

showed that the upper level of adequate epidural

analgesia using bupivacaine 0.5％ was dependent on

the stimulation modality. Stimulation with 10 needles

and laser stimulation could evoke pain in

dermatomes with adequate analgesia to a single

needle. Brennum and co-workers in an elegant series

of studies28,52－55 expanded these findings, and showed,

that epidural local anaesthetics inhibit stimuli of

short duration and covering small areas to a greater

extent than stimuli of the same modality which

were more prolonged or covered larger areas. This

again stressed the importance of using stimuli that

elicit temporal and spatial summation mechanism

（see previous section on temporal and spatial

summation）. These studies indicated that our

standard clinical testing methods（pinprick and

cold）may be insufficient. This was then clearly

demonstrated by Curatolo and co-workers12. After 20

ml bupivacaine 0.5％ nine of ten patients still

perceived the temporal summation of a repeated

electrical stimulation（increase in pain perception

during the repeated stimulation）, even though the

perception of pinprick or cold could only be

perceived in 1 or 2 of the patients. This study and a

second study employing the same methodology of

temporal summation elicited by repeated electrical

stimuli, confirmed the clinical experience that

bupivacaine for spinal anaesthesia produces a more

“profound”block then epidural bupivacaine11,12（Fig. 2）．

An old clinical question is whether the addition of

CO2 or bicarbonate can enhance the analgesic effect

of epidural lidocaine. With traditional clinical testing

methods（pin-prick）Curatolo and co-workers56 could

not establish a difference between plain 2％ lidocaine

compared to 2％ lidocaine with the addition of either

CO2 or bicarbonate. But with the methodology of

temporal summation elicited by repeated electrical

stimuli, they could demonstrate that pain summation

thresholds were higher after lidocaine with

bicarbonate compared to plain lidocaine and

lidocaine CO2.This study once again demonstrates

Fig. 2 Epidural and spinal effect of bupivacaine on
temporal summation. Only spinal analgesia can
block temporal summation.
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that the results obtained may be very dependent on

the stimulus used.

Experimental pain has also been used to

demonstrate that epidural fentanyl has a segmental

effect（Eichenberger and co-workers, unpublished

data, personal communication）, whereas epidural

morphine spreads to involve also cranial segments57.

Eichenberger and co-workers in their study further

showed that epidural fentanyl may attenuate central

hyperexcitability, as temporal summation thresholds

were increased by epidural fentanyl. These findings

have clinical relevance.

Experimental pain models and chronic pain

One of the important questions in chronic pain is

the importance of central hypersensitivity in the

determination of the pain complaints. A substantial

part of our knowledge on the pathological processes

of nociception involved in chronic pain arises from

direct spinal cord neurons recordings in animals. In

patients, direct spinal cord neurons recordings are

not possible. However indirect experimental sensory

models may allow us a quantitative estimate of

hypersensitivity. Hypersensitivity is assumed when

pain is evoked by sensory stimulation that does not

induce pain in normal subjects. If pain is also

induced after sensory stimulation of healthy tissues

at lower stimulation intensities then in normal

subjects, its cause must be a hypersensitivity of the

central nervous system（central hypersensitivity）.

Experimental pain models have been used to

demonstrate central hypersensitivity in different

chronic pain conditions58－65. Koelbaek Johansen and

co-workers59 demonstrated that not only the pain

induced by hypertonic intramuscular saline but also

the area of referred pain was significantly increased

in whiplash patients compared to controls. This was

true not only in the neck area but also when

hypertonic saline was injected into the anterior tibial

muscle, where these patients did not experience

spontaneous pain. Similar results were found in

fibromyalgia patients by Sorensen and co-workers61

using intramuscular hypertonic saline and electrical

repeated stimuli, and by Curatolo and co-workers58 in

whiplash patients using intramuscular electrical

stimulation. These studies show that the processing

of nociceptive stimuli is altered in these patients

with chronic pain.

Many patients with chronic pain complaints,

where even extensive examinations have not

revealed a relevant pathology, are often regarded as

hypochondriacs . The above referred studies

however indicate that central hypersensitivity may

be important in several, and possibly in all, chronic

pain conditions. If central hypersensitivity is present

minor or innocuous stimuli will induce pain, and can

thereby contribute to retaining the hypersensitivity

state. Maybe even after the initial tissue damage has

healed（see also review by Sandku�hler66）. Thereby

the discrepancy between pain complaints and the

negative pathology that is frequently found in

chronic pain patients could be explained. Using

experimental sensory models to demonstrate that

central hypersensitivity is present in these patients

could change future treatment strategies（see also

section on research agenda）.

Practice Points

・It is essential to use multi-modal, multi-structure

pain induction and assessment techniques

・The stimulus should induce a distinct pain and

should preferably elicit temporal and�or spatial

summation mechanisms

・Subjective pain ratings should be used whenever

possible

・When indirect measures are used, a control for

non-nociceptive effects should be employed by

also testing the effect of non-painful stimuli on the

indirect response.

Research Agenda

・New human experimental models involving deep

and visceral pain, that more closely reflect clinical

pain, are needed

・Further research into the effect of different drug

combinations on central hyperexcitability is need
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A summary of how various substances inhibit experimental stimuli.

Summary and conclusion

There is no objective measure of pain, and there

is no single experimental pain test that will be

applicable for all classes of drugs. Multi-modal and

multi-structure pain induction and assessment

techniques are therefore essential, especially when

new drugs or combinations of drugs are tested. An

analgesic profile for different classes of drugs, and

thereby a possible mechanism of action, can be

established by using different pain modalities and

stimulation paradigms.

It is important to use stimuli that are longer

lasting and cover larger areas instead of brief or

very localised stimuli. Thereby temporal and spatial

nociceptive mechanisms can be activated. An

unspecific effect of time and a sensitisation or de-

sensitisation of the stimulated area must be

excluded with a placebo control. By simultaneous

recording the perceived pain intensity and quality

and by also recording the effect of non-painful

stimuli on the recorded response, non-specific drug

effects on the measured response can be revealed.

The importance of peripheral and central

hyperexcitability for acute and chronic pain has

been demonstrated in animals and to some extent in

humans. But in spite of our immense knowledge we

still do not know how to prevent and treat this

hyperexcitability. It is increasingly clear that animal

data may not always be applicable in humans.

Therefore human experimental pain models are

essential for validating the animal data in humans.

Our understanding of nociceptive mechanisms

involved in acute and chronic pain and the effects of

anaesthetic drugs or combinations of drugs on these

mechanisms in humans may also be expanded with

experimental human models. This knowledge can

then help us to develop and test therapeutic regimes

in patients with acute and chronic pain.
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