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Abstract

p53 as a key molecular node in the stress response pathway, including inflammation. p53
is involved in several critical pathways including cell cycle arrest, apoptosis, DNA repair, and
cellular senescence, which are essential for normal cellular homeostasis and maintaining
genome integrity. The alteration of the TP53 gene or posttranslational modification in the p53
protein can alter its response to cellular stress. The molecular archaeology of the TP53
mutation spectrum generates hypotheses concerning the etiology and molecular pathogenesis
of human cancer. The spectrum of somatic mutations in the TP53 gene implicates
environmental carcinogens, and both endogenous agents and processes in the etiology of
human cancer.
(J Nippon Med Sch 2006; 73: 54�64)
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Brief History

p53 was first discovered about 25 years ago as a
53kD protein bound to the hexameric DNA helicase,
Simian Virus (SV-40) large-T antigen Lane et al.1�
Linzer et al.2. Earlier reviews have extensively
described the intriguing history of p53 Harris3�Oren
et al.4. Briefly, the gene encoding p53 (TP53), cloned
from neoplastic rodent and human cells, was initially
described as an oncogene with weak oncogenic
properties. However, it was later realized in the late
1980�s that original TP53 cDNA clones obtained from
human or mouse tumor cell lines contained a
missense mutation and researchers were studying
missense mutant forms of TP53 rather than a wild-
type (WT) gene. Further studies indicated that wild-

type TP53 suppresses neoplastic transformation of
rodent fibroblasts in vivo and the growth of rodent
and human cancer cells in vitro and in vivo. The
history of TP53 took a critical turn, when
researchers discovered that it is mutated frequently
in a variety of human cancers and its mutation
spectrum provides insight into molecular
carcinogenesis (reviewed in Levine et al.5�Hollstein
et al.6�Greenblatt et al.7). The discovery, that TP53
mutation is the most common genetic alteration in
human cancer, lead to the studies describing the
multiple function of WT p53, critical for maintaining
the genetic stability and cellular homeostasis
Hofseth et al.8�Vogelstein et al.9 (Fig. 1).
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Fig. 1 Diagrammatic illustration of the history of 

p53 functions since its discovery in 1979. 

TP53 was first described as a protooncogene 

and later as a tumor   suppressor   gene.   

Subsequent advancement in the studies of 

p53 functions recognized its role in 

maintaining and guarding the genomic 

integrity. As shown, p53 is involved in 

transcription, cell cycle, apoptosis, 

senescence, DNA repair and development.

TP53 Mutation in Human Cancer:
Molecular Archaeology

More than 20,000 mutations in the TP53 gene have
accrued in IARC (International Agency for Research
on Cancer) TP53 mutation database and it is readily
available for public use (http:��www-p53.iarc.fr�
index.html). In contrast to other tumor suppressor
genes, e.g., APC, BRCA1, and ATM, where the most
frequent types of mutations include nonsense
mutations, deletions, and insertions, TP53 shows an
unusual spectrum of mutations. TP53 predominantly
shows missense mutations, in which the encoded
protein contains amino acid substitutions. The
missense mutation not only abrogates the tumor
suppressive function, but also leads to the gain of
oncogenic function by changing the repertoire of
genes whose expression are controlled by this
transcription factor Lane et al.10�Dittmer et al.11�
Hsiao et al.12.
Why study the TP53 mutation spectrum? The

TP53 gene is well suited for mutational spectrum

analysis for several reasons. TP53 mutations occur in
about 50% of human cancers, and so far, more than
20,000 entries have accrued in the database. The
analysis of this database can provide statistically
valid conclusions. The modest size of the p53 gene
(11 exons, 393 amino acids) permits study of the
entire coding region, and it is highly conserved in
vertebrates, allowing the extrapolation of data from
animal models Soussi et al.13. Point mutations that
alter p53 function are distributed over a large region
of the molecule, especially in the hydrophobic
midportion Hollstein et al.6�Levine et al.5�Greenblatt
et al.14, where many base substitutions alter p53
conformation and sequence-specific transactivation
activity; thus the correlation between distinct
mutants and functional changes are possible.
Based on evidence from mutational spectra

analyses in human cancers, a molecular linkage can
be established between a specific cancer and
exposure to a particular carcinogen and is well
exemplified in liver, skin and lung cancers. The most
prominent mutation in liver tumors, from patients
living in areas with high aflatoxin B1 exposure, is a G
to T transversion at the third nucleotide of codon
249, which changes an amino acid arginine to serine
Hsu et al.15�Bressac et al.16�Soini et al.17. A dose-
dependent relationship between dietary aflatoxin B1
intake and codon 249ser p53 mutations is observed in
hepatocellular carcinoma from Asia, Africa and
North America (reviewed in Harris18). A positive
correlation has been reported between the mutation
load of codon 249ser mutant cells in nontumorous
liver and dietary AFB1 exposure Aguilar et al.19. Kirk
et al., reported the presence of 249ser p53 mutation in
the plasma of aflatoxin B1 (AFB1)-exposed patients
with HCC and a few noncancerous cases with
cirrhosis from the Gambia Kirk et al.20. Exposure to
AFB1 and hepatitis B virus infection produced a
multiplicative effect on the risk of developing HCC
in the Gambian population Kirk et al.21. Furthermore,
the treatment of human liver cells with AFB1
produces 249ser mutation in vitro Aguilar et al.22�Mace
et al.23. The detection of 249ser p53 mutations in
plasma DNA provides the possibility of early
detection of HCC in high-risk populations.
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Fig. 2 Chronic inflammation and infection can increase the risk of cancer. Cancer-prone 

chronic inflammatory diseases can be either inherited e.g., hemochromatosis, 

ulcerative colitis, Crohn’ s disease, or acquired through infection by virus, e.g., 

Hepatitis B or Hepatitis C; bacteria, e.g., Helicobacter pylori; parasites, e.g., 

Schistosoma hematobium or Schistosoma japonicum; or can be caused by chemical 

or physical exposure and deregulation of metabolic processes. 

Nitric oxide, p53 and Cancer

Chronic inflammation can increase the risk of
cancer (Fig. 2). Nitric oxide (NO�) is a critical
mediator of inflammation and is involved in the
regulation of tumorigenesis (reviewed in Hussain et
al.24, Fig. 3). It is important to recognize that NO�

involves a complex chemistry and is extensively
reviewed elsewhere Beckman et al.25�Hofseth et al.26.
The ultimate effect of NO� depends on its quantity,
redox status of the cells, cell types and the presence
of metals (reviewed in Hussain et al.24). Use of a
highly sensitive assay for determining the load of
Tp53 mutations before the clonal-expansion of
mutated cells in cancer-prone oxyradical overload
diseases can identify individuals with an increased
cancer risk and provide linkage between exposure
to reactive oxygen and nitrogen species, and cancer
(reviewed in Hussain et al.24). Noncancerous patients
with oxyradical overload diseases, e.g., ulcerative
colitis, hemochromatosis and Wilson disease showed
an increased p53 mutation load and enhanced NOS2
expression prior to the development of cancer
Hussain et al.27�Hussain et al.28�Hussain et al.29. These
findings are consistent with the hypothesis that the
generation of reactive species, for example, oxygen

and nitrogen species, and aldehydes, induce a high
frequency of p53 mutations in oxyradical overload
disease that may contribute to the increased risk of
cancer.
Our investigation of primary human colon tumors

establishes a strong positive relationship between
the presence of NOS2 in tumors and the frequency
of G: C to A: T transitions at CpG sites. These
mutations also are common in lymphoid, esophageal,
head and neck, stomach, brain and breast cancers
Hollstein et al.6�Levine et al.5�Greenblatt et al.7.
Increased NOS2 expression has been demonstrated
in four of these cancers Thomsen et al.30�Ellie et
al.31�Ambs et al.32�Gallo et al.33. Tumor-associated
NO� production may modify DNA directly, or may
inhibit DNA repair activities Wink et al.34, such as
the recently described human thymine-DNA
glycosylase, which has been shown to repair G: T
mismatches at CpG sites Sibghat-Ullah et al.35.
Because NO� production also induces p53
accumulation Messmer et al.36�Forrester et al.37, the
resulting growth inhibition can provide an additional
strong selection pressure for mutant p53. NO� may,
therefore, act as both an endogenous initiator and
promoter in human colon carcinogenesis, and
specific inhibitors of NOS2, as demonstrated in an
animal tumor model Thomsen et al.38, may have
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Fig. 3 Inflammation triggers a complex response involving the generation of free 

radicals that damage critical cellular components. The reactive oxygen or 

nitrogen species produced during inflammation can either directly damage DNA 

and modify proteins or can generate reactive aldehydes, e.g., malondialdehyde 

(MDA) and 4-hydroxynonenal (HNE) by initiating and enhancing lipid 

peroxidation. These reactive aldehydes can produce exocyclic adducts like 

pyrimodo [1,2-alpha]purin-10(3H)one (M1G) and ethenoadducts. These adducts 

can generate missense mutations in the target genes including TP53. The 

reactive species, including NO
●

can also cause posttranslational modification in 

proteins involved in DNA repair and apoptosis.

chemopreventive potential in human colorectal
cancer. In addition to inducing mutations in genes,
NO� can also cause global DNA damage to activate
the anticarcinogenic p53 stress response pathway
through posttranslational modifications Hofseth et
al.39, leading to the transcriptional transrepression of
NOS2 Forrester et al.37�Ambs et al. 40 and
transcriptional transactivation of specific genes Staib
et al.41.
Evidence from both in vitro and in vivo studies

have established the existence of a feedback
inhibitory loop between p53 and NOS2 Forrester et
al.37�Ambs et al.40. TP53 knockout mice produce a
higher basal level of NO� when compared with WT
p53 mice Ambs et al.40. A recent study, using mice
deficient in both TP53 and NOS2, provides evidence
that p 53 and NO � cooperatively regulate
tumorigenesis Hussain et al.42. Lymphomas and
leukemia developed more rapidly in TP53-�-NOS2-�-
or TP53-�-NOS2��-mice than in TP53-�-NOS2���
mice that were cross bred to be >99% C57BL6

background.

Structure-Function Relationship of p53

In the normal unstressed condition, p53 is
maintained at a very low level by ubiquitine-
mediated proteasomal degradation (reviewed in
Woods et al.43). One of the key proteins in the
regulation of p53 stability is MDM2, which is also a
p53 transcriptional target, thus establishing a
feedback loop Wu et al.44�Haupt et al.45. MDM2
interacts with the N-terminal region of p53 and
functions as an ubiquitin ligase Fang et al.46�Honda
et al.47. However, its temporary stabilization and
functions are modulated by either mutations in TP53
or posttranslational modification in a critical
functional region of the protein (reviewed in Appella
et al.48�Hussain et al.49). Because a majority of the
missense mutations are in the sequence-specific
DNA binding region of the protein, much attention
has been paid to the transcription-transactivator
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Fig. 4 Inflammatory stress activates the p53 pathway. p53 is at the crossroads of 

multiple cellular stress response pathways including inflammation. The 

inflammatory stress response is complex and well coordinated, which includes 

the release of a variety of cytokines, e.g., TNFα, IL-1B, MIF, and IFNγ leading to 

the generation of reactive oxygen and nitrogen species, activation of HIF1α and 

DNA replication arrest. Sensors of these stresses upstream of p53, for example, 

ATM (ataxia telangiectasia mutated) or ATR (ATM and RAD 3-related) kinase 

cascades, lead to the stabilization of p53. Following p53 stabilization several 

target genes are activated to protect cells from stress. These target genes are 

involved in many vital cellular functions e.g., cell cycle, DNA repair, apoptosis and 

senescence.

function of the p53. Other functional domains of p53
including those in the carboxy-terminus (COOH)
region, however, can be altered due to the change in
protein conformation Milner et al.50 caused by a
missense mutation in the sequence-specific DNA
binding region. The positively charged COOH region
contains the putative major nuclear localization
signal (amino acids 316-325), the oligomerization
domain (amino acids 319-360), and a DNA damage-
binding domain (amino acids 318-393) Brain et al.51�
Wang et al.52�Wu et al.53�Bakalkin et al.54. Several
posttranslational events have been reported to be
involved in the stabilization of p53 in order to
perform its designated function following stress
Appella et al.48�Prives et al.55�Braithwaite et al.56�
Woods et al.43�Yee et al.57�Harris et al.58. These p53
posttranslational modifications include
phosphorylation, mostly at the N-terminus and
phosphorylation, acetylation and sumoylation at the
C-terminus region. Several overlapping and specific
posttranslational modifications occur, following a
variety of stress signals that activate p53 functions
(reviewed in Appella et al.48). The function-structure
relationship revealed by the analysis of the p53

mutation spectrum Hollstein et al.6�Greenblatt et al.7,
its NMR and crystallographic three dimensional
structure Cho et al.59�Clore et al.60�Jeffrey et al.61, and
functional studies of wild-type versus mutant p53
activity (reviewed in Vogelstein et al.62) have
generated both hypothesis for further study and
strategies for the development of rational cancer
therapy.

p53 Functions

The most significant function of p53, as a tumor
suppressor, emerged from the findings that mice,
deficient in TP53, are susceptible to spontaneous
tumorigenesis Donehower et al.63 and patients with
cancer-prone Li-Fraumeni�s syndrome contained a
germline mutation in TP53 allele Malkin et al.64�
Srivastava et al.65. p53 is involved in several
important cellular functions that are responsible for
maintaining cellular homeostasis and is convincingly
at the crossroads of the cellular responses to a
variety of stresses caused either endogenously or by
external exposure (reviewed in Harris66�Hofseth et
al.8�Braithwaite et al.56�Woods et al.43�Harris et al.58�
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Lane et al.67�Vogelstein et al.9) (Fig. 4). The widely
studied p53-regulated responses include apoptosis,
cell cycle arrest, DNA repair, recombination and
senescence. p53 functions largely as a transcription
factor Polyak et al.68�Yu et al.69, however, it may also
have transcriptionally independent functions Caelles
et al.70�Haupt et al.71. The wide array of p53
responses following stress are accomplished by a
well-coordinated network, which involves several
negative and positive feedback loops (reviewed in
Harris et al.58).

p53 and Apoptosis

The role of p53 in apoptosis is studied extensively
and has been linked to its tumor suppressor activity
(reviewed in Yee et al.57). In p53-null transgenic mice,
tumor progression is correlated with a loss of
apoptosis Parant et al.72. p53 transcriptionally
transactivates or transrepresses many different
genes to trigger apoptotic responses involving both
extrinsic and intrinsic pathways Fridman et al.73.
Among other factors, it is the balance between
proapoptotic and anti-apoptotic signals that
determines the threshold of apoptosis. The p53-
mediated transactivation of apoptosis-related genes
include proapoptotic Bcl-2 family members e.g., Bax,
Puma, Noxa, and Bid, which leads to the
mitochondrial membrane depolarization in the
intrinsic pathway; apoptotic protease activating
factor-1 (APAF-1 ) , a major component of
apoptosome; and Fas�CD95, death receptor 4 (DR4),
and DR5, components of the extrinsic apoptotic
pathways. A mechanism involving oxidative stress
in p53-mediated apoptosis has been described
following the transactivation of several redox-related
genes by p53, referred to as p53-inducible genes
(PIGs) Polyak et al.68. p53-mediated upregulation of
the antioxidant enzyme, manganese superoxide
dismutase (MnSOD), can also create an imbalance in
antioxidant enzyme machinery leading to oxidative
stress and apoptosis Hussain et al.74. In addition to
the mechanism involving p 53-dependent
transactivation of apoptotic genes, transcription-
independent mechanisms have also been suggested
in p53-mediated apoptosis Haupt et al.75�Yee et al.57.

Recent evidence has suggested that p53 can act as a
functional homologue of the BH3-only protein
(reviewed in Yee et al.57). p53 can also directly bind
to and inhibit the Bcl-XL and Bcl2 proteins, leading
to the release of cytochrome C Mihara et al.76 and
the initiation of caspase cascade. Given the fact that
different components aid in the p53-mediated
apoptotic response, the question always remains i.e.,
which one of these components is the essential
player? There is strong evidence suggesting PUMA
as a critical component of p53-mediated apoptosis
Jeffers et al.77�Chipuk et al.78. However, in other cell-
types, NOXA seems to be equally significant
Villunger et al.79. Based on the complexity of the
apoptotic process and a large number of
transcriptional and nontranscriptional downstream
targets of p53, it would be appropriate to consider
not only one, but also a set of components and their
coordinated effects to be responsible for p53-
mediated apoptosis in one or a class of cell types
Yee et al.57.

p53 and DNA Repair

Although a key player, based on available
evidence, it can be argued that p53�s role in inducing
apoptosis does not completely suffice for its tumor
suppressing function. Therefore, other p53 functions
e.g., cell cycle arrest, maintenance of genomic
stability, DNA repair and senescence can be of
utmost significance in the tumor suppressor
function. p53 modulates DNA repair processes that
include nucleotide excision repair (NER), Base
excision repair (BER), nonhomologous end-joining
(NHEJ) and homologous recombination by both
transactivation-dependent and -independent
pathways and, therefore, is suggested as a molecular
node among the up-stream signaling cascade and
down-stream DNA repair and recombination
pathways (reviewed in Sengupta et al.80). The loss of
p53 reduces the repair of UV-induced DNA damage
in human cells Wang et al.81�Smith et al.82�Ford et
al.83. p53 regulates the transcription of p48DDB2 and
xeroderma pigmentosum complementation group C
(XPC) Hwang et al.84�Adimoolam et al.85. p48DDB2 is
one of the two subunits of UV-damage DNA binding
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protein (UV-DDB), whereas, XPC is a part of the
global genomic repair (GGR)-specific complex that
identifies the altered base pairing. Furthermore,
p48DDB2 regulates the p53 level following UV-damage,
and thereby, suggests the existence of a positive
feedback loop Adimoolam et al.86. Wild-type p53, but
not the mutant protein, facilitates the recruitment of
XPC and the TFIIH complex to the UV-damaged
sites Wang et al.87. In addition to the role of p53 in
BER involving transcriptional transactivation of
genes, it also participates in a transactivation-
independent manner. p53 modulates helicase activity
of TFIIH complex by binding to XPB and XPD
Wang et al.81�Leveillard et al.88, thereby affecting the
NER.
There are convincing evidence suggesting the

involvement of p53 in the regulation of homologous
recombination (HR) (reviewed in Sengupta et al.80).
An increased frequency of HR is reported in
different developmental stages of mice lacking p53
Bishop et al.89. Expression of p53 mutants enhanced
HR, while WT p53 reduced the frequency of HR
Akyuz et al.90. p53-mediated regulation of HR can be
independent of its activity as a transcription factor
Dudenhoffer et al.91�Willers et al.92. p53 can physically
bind to RAD51 and RAD54, major components of
HR machinery, and controls the level of HR
Sengupta et al.93�Linke et al.94. Mutation in the Tp53
hotspot codon 273 reduces the capacity of p53
protein to bind with RAD51-DNA complexes
Buchhop et al.95�Susse et al.96. p53 interaction with
RAD51 plays a key role in presynaptic, synaptic as
well as postsynaptic phases of HR (reviewed in
Sengupta et al.80).

p53 and Senescence

Cellular senescence confers a permanent
withdrawal from the cell cycle and can be induced
in response to various stresses. These stimuli include
DNA damage, oncogenic signals, dysfunctional
telomeres and epigenetic changes in chromatin
(reviewed in Campisi97). Senescence can contribute to
the suppression of cancer, however, senescent cells
can also stimulate the proliferation and progression
of preneoplastic cells Campisi98�Green et al.99�

Campisi100. Senescence can also produce aging-
related pathology (reviewed in Campisi97). Cellular
senescence is largely regulated by the p53 Wahl et
al.101 and p16�Rb Beausejour et al.102 pathways. The
p53 pathway can be used by several different
stimuli for senescence including dysfunctional
telomere and RAS mitogenic signals involving
reactive oxygen species Itahana et al.103�d�Adda et
al.104�Pearson et al.105�Serrano et al.106. Dependency of
some of these stimuli of senescence on p53 pathways
is shown by the reversal of senescent growth arrest
with the loss of p53 function, however, the reversal
is not achieved in all cell types and their resistance
to reversal depended on p16 Beausejour et al.102. The
p53-mediated pathway to senescence involves the
transcription of p53-dependent genes including p21,
whereas, Rb pathways involve p16 induction,
followed by Rb activation and chromatin
reorganization, causing the suppression of E2F
target genes Campisi97. pRb-mediated senescence is
irreversible and cannot be reversed by inactivating
p53 or pRb.

Concluding Remarks

Over the course of evolution, mammalian cells
have acquired an intricate network of protective
mechanisms to safeguard the genomic integrity. One
of the prominent molecules is p53, which has earned
its title as �guardian of the genome� by its diverse
involvement in processes critical for guarding and
fixing the genomic integrity and cellular homeostasis
Lane107. One of the serious consequences due to a
failure in the safety networks is the development of
cancer. The fact that the p53 pathway is defective in
the majority of human cancers, underscores its
importance in protecting the cells from genetic,
biochemical and physiological dysregulation that can
contribute to tumor development. The identification
of stresses and the mechanisms responsible for the
stabilization of p53 and the subsequent activation of
p53-dependent downstream pathways have placed
the p53 protein at the crossroads of cellular stress
response pathways. The elucidation of the p53-
mediated pathways involving growth arrest ,
apoptosis , DNA repair , senescence , and
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differentiation provides numerous molecular targets
for intervention and therapy.
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