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Abstract

Positron emission tomography (PET) is a nuclear medicine imaging technique. Through
the use of various radiopharmaceuticals, PET allows in vivo imaging of regional cerebral
functions, including cerebral blood flow, molecular metabolism, and receptor binding capacity.
PET is useful not only for diagnosis and therapeutic planning but also for neurological science
research.
(J Nippon Med Sch 2008; 75: 68―76)
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Introduction

Positron emission tomography (PET) is a nuclear
medicine imaging technique that allows imaging and
quantifying of cellular and molecular processes in
humans. The PET scanner detects pairs of γ-rays
emitted indirectly by positron-emitting radioisotopes
that are introduced into the body along with a
radiopharmaceutical. Thus, PET allows in vivo

imaging of regional cerebral functions, including
cerebral blood flow, molecular metabolism, and
receptor binding capacity (Table 1). In this review,
the role of PET as a powerful tool for brain research
is discussed.

Cerebral Blood Flow and
Cerebral Metabolism of Oxygen

Imaging techniques have been developed and
applied to evaluate brain hemodynamics1. PET and 15

O-labeled gasses allow in vivo imaging of regional

cerebral functions, including cerebral blood flow
(CBF) , cerebral blood volume, and oxygen
metabolism. Chronic cerebrovascular disorders are
the most frequent indications for the measurement
of CBF and the oxygen extraction fraction (OEF). In
patients with chronic internal carotid artery
occlusion, elevated OEF values are considered key
indicators of impending infarction and for
determining indications for bypass surgery2―5.

When cortical areas become activated, regional
cerebral blood flow increases. [15O]H2O PET allows
repeated measurement of CBF under different
conditions, because the half-life of 15O is extremely
short (t1�2=2 minutes). Brain PET activation has been
used to reveal regional cortical neural activity
involved in language and visual processing in the
living human brain6―9. Moreover, PET has also been
used for planning surgical treatment 10, and
monitoring recovery from motor aphasia after
ischemic stroke11.
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Table 1 Radiopharmaceuticals for brain PET

ApplicationRadiopharmaceutical

Cerebral blood flow[15O]CO2, [15O]H2O

Cerebral oxygen consumption[15O]O2
Cerebral blood volume[15O]CO

Glucose metabolism[18F]FDG

Monoamine oxidase[11C]deprenyl

Dopamine synthesis6-[18F]DOPA
O-[11C]methyl-L-tyrosine

Dopamine transporter[11C]CFT

Vesicular monoamine transporter 2[11C]DTBZ

Dopamine D2 receptor
[11C]NMSP
[11C]raclopride

Dopamine D1 receptor[11C]SCH23390

Central benzodiazepine receptor[11C]flumazenil

Peripheral benzodiazepine 
receptor[11C]PK11195

Sigma1 receptor[11C]SA4503

Muscarinic acetylcholine receptor[11C]3NMPB

Histamine H1 receptor[11C]doxepin

Adenosine A1 receptor[11C]MPDX

Adenosine A2A receptor[11C]TMSX

P-glycoprotein[11C]verapamil

Amyloid β protein[11C]PIB
[11C]BF-227

Amino acid metabolism[11C]methionine

Cerebral Metabolism of Glucose

Cerebral glucose metabolism is thought to reflect
regional neuronal activities12―14. The glucose analog 2-
[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) accumulates
in the brain at a rate proportional to the regional
metabolism of glucose. Therefore, [18F]FDG PET
images reflect regional brain dysfunction. We have
reported the relationship between each task of the
Mini-Mental State Examination (MMSE) and regional
glucose hypometabolism in patients with
Alzheimer’s disease (AD)15. That study demonstrated
that in patients with AD, the distribution of
hypometabolism in the resting state is related to
clinical symptoms and that MMSE scores reflects
brain dysfunction in the left hemisphere. This study
also showed that the correlation between statistical

parametric mapping (SPM) and [18F]FDG PET is
useful for objectively evaluating the results of
cognitive tests and diagnostic scoring.

[18F]FDG PET is especially useful for the
differential diagnosis of early-stage neurological
diseases16―28. In patients with AD, [18F]FDG PET and
statistical image analysis techniques, such as SPM
and 3-dimensional stereotactic surface projections,
have shown that cerebral glucose metabolism is
reduced in the parietal lobe and in the posterior
cingulate gyrus16,17,29. Some studies have revealed that
glucose metabolism is reduced in the occipital lobe
in patients with Parkinson’s disease (PD), Fig. 118,19,
as well as in patients with dementia with Lewy
bodies (DLB)20. Previous studies using region-of-
interest analysis have found that the cerebral
metabolism of glucose was reduced in the basal
ganglia, brainstem and cerebral cortex, and,
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Fig. 1 SPM  analysis  of  representative  brain 
regions with a significant decrease of 
cerebellar normalized FDG uptake in 14 
patients with PD without dementia as 
compared with 24 control subjects. A 
statistical map is displayed with a voxel 
threshold probability of 0.001 and an extent 
threshold of 500 contiguous voxels per 
cluster   (uncorrected   for   multiple 
comparison). The FDG uptake in PD was 
significantly  reduced  in  the  bilateral 
occipital cortices.

particularly, in the frontal lobe of patients with
progressive supranuclear palsy (PSP)21―25. SPM has
revealed hypometabolism of the midbrain in PSP,
which is independent of clinical deterioration26.
Hypometabolism of glucose is observed in the
bilateral putamen of patients with multiple system
atrophy with predominant parkinsonian features
(MSA-P, previously called striatonigral degeneration)
and in the cerebellum and pons of patients with
multiple system atrophy with predominant
cerebellar features (MSA-C, previously called
olivopontocerebellar atrophy)30,31. [18F]FDG PET has
demonstrated asymmetrical hypometabolism in the
striatum and cerebral cortex of patients with
corticobasal degeneration (CBD)31―33.

Approximately 40 to 60 minutes after injection,
[18F]FDG accumulates in the brain in a manner
reflecting regional glucose metabolism. Therefore,
[18F]FDG PET is suitable for demonstrating changes
in regional cerebral metabolism associated with
walking before the subject is immobilized in the

PET scanner. An activation study with [18F]FDG
PET has shown differences in regional brain
function between healthy control subjects and
patients with MSA-C34.

Dopaminergic System

PET allows the acquisition of in vivo images of
regional cerebral functions, which include blood flow,
and metabolism, and receptor-binding capacity35. PD
is a progressive degenerative neurological disorder
characterized by resting tremor, bradykinesia,
cogwheel rigidity, and postural instability. These
symptoms result primarily from the loss of
dopaminergic neurons in the substantia nigra. PET
has enabled the acquisition of in vivo images of
dopamine metabolism in patients with PD (Fig. 2)36.
[18F]DOPA PET has demonstrated that presynaptic
dopaminergic function in the dorsal putamen is
reduced to almost 50% of normal in patients with
PD37. The distribution of presynaptic membrane
dopamine transporter (DAT) in the human brain can
be shown by means of PET with [11C]2β-
carbomethoxy-3β-(4-fluorophenyl) tropane ([11C]CFT)
(Fig. 3)38. Uptake of DAT-ligand PET is thought to
be more sensitive for detecting dopaminergic
dysfunction in early PD than is [18F]DOPA PET
because of a compensatory down-regulation of DAT
to maintain dopamine levels at the synapses39. PET
with [ 11C ] raclopride ( [ 11C ]RAC) and N- [ 11C ]
methylspiperone ([11C]NMSP) has shown that the
number of dopamine D2 receptors is increased in the
putamen in PD (Fig. 3). In patients with MSA-P, the
number of both DAT and dopamine D2 receptors is
decreased in the putamen40.

The binding of [11C]RAC depends on the
concentration of endogenous dopamine, because [11C]
RAC has a weak affinity for dopamine D2 receptors.
This property of [11C]RAC enables the use of [11C]
RAC PET in receptor-activation studies to
investigate whether physiological stimulation
induces dopamine release41.

Adenosine A1 and A2A Receptors

Adenosine is produced by conversion of
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Fig. 2 Dopaminergic    synapses    and 
radiopharmaceuticals. Tyrosine hydroxylase 
catalyzes the conversion of L-tyrosine to 3,4-
dihydroxy-L-phenylalanine (L-DOPA), which 
is converted to dopamine (DA) by aromatic 
L-amino acid decarboxylase. The turnover of 
dopamine can be evaluated PET and 
[18F]fluoro-L-DOPA ([18F]DOPA). Dopamine 
is transported  from  the  cytoplasm  into 
synaptic  vesicles  by  the  vesicular 
monoamine transporter 2 (VMAT2), and 
stored in synaptic vesicles. 
[11C]Dihydrotetrabenazine  ([11C]DTBZ) binds 
to VMAT2. Membranes of the synaptic 
vesicles  coalesce  with  the  cytoplasmic 
membrane upon depolarization of the axon 
terminal, and dopamine is released from the 
synaptic vesicles into the synaptic cleft. The 
released  dopamine  binds  to  dopamine 
receptors (D1, D2, D3, D4, D5, and their 
variants), and interacts at the level of second 
messengers   and   beyond.   N-
[11C]methylspiperone  ([11C]NMSP)  and 
[11C]raclopride ([11C]RAC) have affinity for 
the  dopamine   D2   receptor,   whereas 
[11C]SCH23390 has affinity for the dopamine 
D1 receptor. The released dopamine also 
binds to dopamine transporters (DAT), 
which reuptake dopamine from the synaptic 
cleft  into  dopaminergic  neurons.  The 
distribution of presynaptic membrane DAT 
in the human brain can be investigated with 
PET   and    [11C]2β-carbomethoxy-3β-(4-
fluorophenyl) tropane (CFT).

Fig. 3 Dopaminergic PET in a healthy 54-year-old 
man (A) and in a 60-year-old patient with PD 
(B).  Both  [11C]CFT  and  [11C]RAC 
accumulated in the putamen and head of 
the caudate nucleus in the healthy subject. 
In the patient with PD, however, PET 
images demonstrated low density of the 
dopamine transporter and high density of 
dopamine D2 receptors in the putamen.

intracellular and extracellular adenine nucleotides,
and plays a role as an endogenous modulator of
synaptic functions in the central nervous system42―44.

The effects are mediated by at least four receptor
subtypes: A1, A2A, A2B, and A3

45.
Adenosine A1 receptors are widely distributed

throughout the entire brain, they inhibit adenyl
cyclase46,47, and interact negatively with dopamine D1

receptors in direct pathway neurons48,49.
[ 1-methyl-11 C ] 8-dicyclopropylmethyl-1-methyl-3-

propylxanthine (MPDX) is thought to be a promising
PET ligand with selective and high affinity for
adenosine A1 receptors in the central nervous
system47,50―52. An animal study of occlusion and
reperfusion has found that decreased MPDX binding
to adenosine A1 receptors after reperfusion was a
sensitive predictor of severe ischemic damage53.

Adenosine A2A receptors are abundant in
dopamine-rich areas of the brain, such as the basal
ganglia54. These receptors are known to stimulate
adenyl cyclase, and interact negatively with
dopamine D2 receptors at the level of second
messengers and beyond54. Adenosine A2A receptor
antagonists have recently attracted attention as the
nondopaminergic treatment of PD. The selective
adenosine A2A receptor antagonist istradefylline has
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been developed as a novel nondopaminergic agent
for PD and provides an antiparkinsonian benefit
without causing or worsening dyskinesia, which is
one of the most inconvenient side effects of
dopaminergic therapy55,56. A postmortem study has
suggested that adenosine A2A receptors were
increased in patients with dyskinesia following long-
term levodopa therapy57. Therefore, adenosine A2A

receptors may be involved in the development of
side effects of antiparkinsonian agents. Although
adenosine A2A receptors have attracted much
attention, until quite recently there has been little
information regarding their presence in the living
human brain. We developed the PET ligand, [7-
methyl-11C] - ( E ) -8- ( 3,4,5-trimethoxystyryl ) -1,3,7-
trimethylxanthine ( [ 11 C ] TMSX ) for mapping
adenosine A2A receptors58,59 and have successfully
visualized the receptors in a living human brain by
means of [11C]TMSX PET60,61. Our studies have
demonstrated that the binding potential is greatest
in the anterior and posterior putamen, followed by
the head of the caudate nucleus and thalamus, but is
low in the cerebral cortex, especially the frontal
lobe60,61. [11C]TMSX PET has also shown a large
binding potential in the striatum where adenosine
A2A receptors are abundant, as found in postmortem
and nonhuman studies, but the binding potential of
[11C]TMSX is greater in the human thalamus than in
other mammals.

Studies for adenosine A1 and A2A receptors in PD
with extraction of the time activity curve of plasma
using independent component analysis (EPICA)62―65,
[11C]MPDX and [11C]TMSX without arterial blood
sampling are now underway in our laboratory.

Sigma1 Receptors

The sigma receptor has been established as a
distinct receptor, although it was initially proposed
as a subtype of opioid receptors66. It is classified into
at least two subtypes: sigma1 and sigma2

67. Sigma1

receptor is believed to be involved in aging68,69 and
various diseases, such as schizophrenia70, depression71

and ischemia72.
In patients with AD, a postmortem study has

shown that the sigma1 binding sites are reduced in

the hippocampus73. Sigma1 receptor agonists are
expected to improve cognitive deficits in AD
patients74. Ishiwata et al.75 have developed the PET
ligand [11C]SA4503 for mapping sigma1 receptors, and
have successfully visualized them in the living
human brain76―81. Using [11C]SA4503 PET, we found
that the density of cerebral and cerebellar sigma1

receptors is reduced in early-stage AD82.
Some studies have suggested that sigma1

receptors were involved in modulating the synthesis
and release of dopamine83,84. In patients with PD, we
have found that the binding potential of [11C]SA4503
is significantly lower on the more-affected side than
on the less-affected side of the anterior putamen,
although there is no significant difference with
respect to binding potential between patients and
control subjects85.

Benzodiazepine Receptors

The distribution of central benzodiazepine
receptors (BZRs) in the human brain can be shown
with PET and [11C]flumazenil (FMZ), a highly specific
benzodiazepine antagonist. These receptors belong
to the γ-aminobutyric acid type A (GABAA) receptor
complex. Because these receptors are widely
distributed in the cerebral cortex, it was assumed
that [11C]FMZ PET could demonstrate the neural
density of the cerebral cortex86. Thus, they have
been used to investigate the neural density in
various diseases, including AD 87,88, cerebellar
degeneration89, chronic alcoholism90, Huntington’s
disease91 and temporal lobe epilepsy92―94. In a [11C]FMZ
PET study of AD, Ohyama et al. have shown that
BZRs in the association-cortex are less impaired
than is neuronal function, as assessed on the basis
of the cerebral blood flow and glucose metabolism88.
[11C]FMZ PET is of value in determining an
epileptogenic focus92―94. We have shown that the time
for [11C]FMZ PET static scaning to obtain
semiquantitative images of BZR distribution is 20 to
40 minutes after injection, which is almost
proportional to the BZR binding capacity and
sufficiently useful for clinical studies 93,95,96.
Furthermore, using the static scan method we have
demonstrated that synaptic elimination may be
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independent of visual experience in the GABAergic
system of the human visual cortex during visual
development and have indicated that GABAergic
inhibitory activity must be involved in the neural
plasticity of the visual system96.

Microglia are involved in immune surveillance in
the intact brain and become activated in response to
inflammation, trauma, ischemia, tumor, and
degeneration of neurons. PET images with [11C]PK
11195, a specific ligand for peripheral BZRs, reflect
microglial activation and be used to study various
diseases, such as ischemic stroke97,98, AD99, PD100,101,
MSA102, PSP103 and CBD104.

Amyloid Imaging

Senile plaques and neurofibrillary tangles are
hallmark pathologic features accompanying the
degeneration involved in AD, and amyloid β peptide
is a major constituent of senile plaques105. Studies are
underway to determine whether amyloid PET
would be a useful tool for the early diagnosis of
AD106―108 and DLB109,110. Amyloid imaging is also
expected to be useful for assessing the efficacy of
antiamyloid therapy107.
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