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Abstract

Stem cell based therapies for the repair and regeneration of various tissues and organs
offer a paradigm shift that may provide alternative therapeutic solutions for a number of
diseases. Although embryonic stem cells and induced pluripotent stem cells are theoretically
highly beneficial, there are various limitations to their use imposed by cell regulations, ethical
considerations, and genetic manipulation. Adult stem cells, on the other hand, are more easily
available, with neither ethical nor immunoreactive considerations, as long as they are of
autologous tissue origin. Much research has focused on mesenchymal stem cells isolated from
bone marrow stroma which have been shown to possess adipogenic, osteogenic, chondrogenic,
myogenic, and neurogenic potential in vitro. However bone marrow procurement is extremely
painful for patients and yields low numbers of harvested cells.

When compared with bone marrow-derived mesenchymal stem cells, adipose-derived stem
cells are equally capable of differentiating into cells and tissues of mesodermal origin. Because
human adipose tissue is ubiquitous and easily obtainable in large quantities under local
anesthesia with little patient discomfort, it may provide an alternative source of stem cells for
mesenchymal tissue regeneration and engineering. Based on our previous experimental
findings, this review highlights the molecular characteristics, the potential for differentiation,
the potential for wound healing, and the future role of adipose-derived stem cells in cell-based
therapies and tissue engineering.
(J Nippon Med Sch 2009; 76: 56―66)
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Introduction

The emerging field of regenerative medicine
requires a reliable source of stem cells in addition to
biomaterial scaffolds and cytokine growth factors.
By definition, a stem cell is characterized by its

ability to self-renew and to differentiate along
multiple lineage pathways.
Candidates for such strategies include embryonic

stem cells (ESCs), induced pluripotent stem cells
(iPSCs)1 and postnatal adult stem cells. Although the
therapeutic potential of ESCs and iPSCs is enormous
due to their auto-reproducibility and
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pluripotentiality, there are still some limitations to
their practical use, including cell regulations, ethical
considerations and genetic manipulation1 ― 3. In
contrast, postnatal adult stem cells are, by nature,
immunocompatible, and there are no ethical issues
related to their use. Cells obtained from bone
marrow stroma, termed mesenchymal stem cells
(MSCs), are the representative cells of this type, and
possess adipogenic, osteogenic, chondrogenic,
myogenic and neurogenic potential in vitro4―6.
However, MSCs with similar characteristics to bone
marrow-derived MSCs7,8, have recently been isolated
from several different tissue sources in addition to
bone marrow stroma. Our laboratory has shown
previously that cells obtained from human
liposuction fat aspirates can also differentiate into
adipogenic, osteogenic, chondrogenic, and myogenic
cells in a lineage-specific culture medium, and we
termed these cells adipose-derived stem cells
(ASCs)9,10. Furthermore, we have successfully
performed several studies of in vivo tissue
regeneration and primary wound repair11―15.
Adipose tissue represents an abundant and

accessible source of adult stem cells that can
differentiate along multiple lineage pathways. The
aims of this review are: (1) to describe the
availability of ASCs, (2) to describe the isolation
procedures and molecular characterization of ASCs,
(3) to describe both the in vitro and in vivo

differentiation potential of ASCs, (4) to introduce
current and on-going applications for clinical use and
(5) to discuss the future clinical perspective of ASCs.

Availability of ASCs

Several literature reviews indicate that MSCs
obtained from bone marrow, adipose tissue, and
umbilical cord show no differences in fibroblast-like
morphology, immune phenotype, success rate of
isolation MSCs, colony frequency, and differentiation
capacity16,17. However, Gimble et al. have suggested
that a stem cell for regenerative medicinal
applications should ideally meet the following
criteria18,19:
1. Can be found in abundant quantities (millions to

billions of cells)

2. Can be harvested with a minimally invasive
procedure
3. Can be differentiated along multiple cell lineage

pathways in a regulatable and reproducible manner
4. Can be safely and effectively transplanted to

either an autologous or allogeneic host
5. Can be manufactured in accordance with

current Good Manufacturing Practice guidelines
Adipose tissue could be considered to fulfill all

these criteria. With the increased incidence of
obesity in modern populations, subcutaneous adipose
tissue is abundant and readily accessible. To harvest
the adipose tissue, a liposuction procedure is less
invasive than bone marrow aspiration. In general,
well-trained plastic surgeons are familiar with
liposuction procedures, and the technique produces
less patient discomfort and donor site morbidity.
Small amounts of adipose tissue (100 to 200 mL) can
be obtained under local anesthesia. In addition, 1 g of
adipose tissue yields approximately 5 × 103 stem
cells20, which is 500-fold greater than the number of
MSCs in 1 g of bone marrow21. As such, adipose
tissue can be considered as a rich source of stem
cells.

Isolation, Proliferation and Molecular
Characterization of ASCs

In previous studies, we established a standard
protocol for the isolation of ASCs from adipose tissue
using enzymatic digestion9, which has been broadly
applied by most scientists. Briefly, the raw
liposuction aspirate or finely minced adipose tissue is
washed extensively with sterile phosphate-buffered
saline to remove blood cells, saline, and local
anesthetics. The extracellular matrix is digested
with 0.075% collagenase at 37℃ for 30 minutes to
release the cellular fraction. Collagenase is
inactivated with an equal volume of Dulbecco’s
modified Eagle medium (DMEM) containing 10%
fetal bovine serum (FBS). The infranatant is
centrifuged at 250 g for 10 minutes to obtain a high-
density cell pellet. The pellet is resuspended in
DMEM and 10% FBS, and plated in 100-mm tissue
culture dishes at a density of 1 × 106 cells per plate.
These cells are maintained in control medium
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Fig. 1 Adipose derived stem cells (ASCs) isolated from humans and other species.  Regardless of the species, 
ASCs exhibit fibroblast-like morphology and multipotency towards adipogenic, osteogenic and 
chondrogenic differentiation.

(DMEM supplemented with 10% FBS and 1%
antibiotic�antimycotic) at 37℃ and 5% CO2. Attached
cells obtained from human and other species exhibit
a fibroblast-like appearance and the potential to
differentiate into adipogenic, osteogenic,
chondrogenic, myogenic, and neurogenic lineages
under the appropriate culture conditions: this
potential indicates they are multipotent ASCs (Fig. 1).
In our previous report, the proliferation assay

showed that ASCs obtained from 20 donors, and
cultured under standard conditions, exhibited an
average population doubling time of 60 hours9.
Generally, ASCs display a cell doubling time of 2 to 4
days, depending on donor age, the type (white or
brown adipose tissue), and location (subcutaneous or
visceral) of the adipose tissue, the type of surgical
procedure, culturing conditions, plating density, and
media formulations16,22.
The proliferation of ASCs can be stimulated by

several exogenous supplements. These include
fibroblast growth factor 2 (FGF-2) via the FGF
receptor 223, sphingosylphosphorylcholine via the
activation of c-jun N-terminal kinase (JNK)24, platelet-
derived growth factor via the activation of JNK25,
and oncostatin M via activation of the microtubule-
associated protein kinase (MEK)�extracellular signal-
regulated kinase (ERK) and the JAK3�STAT1

pathway26.
On the other hand, Rubio et al. have shown that

human ASCs undergo malignant transformation
with prolonged passaging over more than 4
months27. These results indicated that care must be
taken in the manipulation and culture of ASCs.
Moreover, such a phenomenon implies that freshly
isolated ASCs might be safer and more practical
than cultured ASCs for clinical use.
Cell surface immunophenotypes, such as CD

markers (determined with fluorescence-activated cell
sorting), of ASCs isolated from humans and other
species have been investigated by various
independent groups9,28―32. Regardless of differences in
isolation, culture procedures and time in passage, the
reported immunophenotypes were relatively
consistent between research groups. Indeed, such
ASC surface marker expression profiles seem to be
similar to those of bone marrow-derived MSCs28,33.
Finally, ASCs secrete potent growth factors, such

as vascular endothelial growth factor (VEGF),
hepatocyte growth factor (HGF), FGF-2, and insulin-
like growth factor 1 (IGF-1)34―36. In addition, the levels
of VEGF or HGF or both secreted by ASCs can be
induced by exposure of the cells to hypoxia34, growth
factors, differentiation factor37 or tumor necrosis
factor-α38.
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Fig. 2 In vivo regeneration of adipose tissue by ASCs. A: A yellowish and more three-
dimensional structure was regenerated after 8 weeks of ASC implantation with fibrin 
glue. B: Fluorescence-microscopic observation demonstrated green fluorescent protein 
more strongly. C: At 8 weeks, increased lipid accumulation was confirmed by ORO 
staining. D: Fluorescence microscopic image shows green fluorescence along the cell 
surface membranes of the newly formed tissue. (Reprinted from Mizuno et al. Cells 
Tissues Organs. 187: 177, 2008)

In vitro Differential Potential of ASCs

There are numerous examples from the literature
demonstrating the multipotency of ASCs in vitro.
Because ASCs are of mesodermal origin, potential
lineages obviously include the adipogenic 9,10,39,
osteogenic9,10,40, and chondrogenic9,10,41 lineages, and the
myogenic lineage leading to skeletal muscle9,10,42,43,
smooth muscle44,45, and cardiomyocytes46.
Interestingly, however, ASCs have also been shown
to possess the potential to differentiate into non-
mesodermal lineages including neuron-like cells47―50,
endothelial cells35,51, epithelial cells52, hepatocytes53,54,
pancreatic cells55, and hematopoietic supporting
cells56,57.

Potential of In vivo Tissue Regeneration

In addition to in vitro studies of differentiation

assays in ASCs, tissue�organ regeneration and
repair experiments using ASCs with or without
appropriate scaffolds have been performed in vivo.
With regard to tissue of mesodermal origin, ASCs

pre-induced in adipogenic differentiation medium
and seeded onto a scaffold of such materials as poly
lactic-co-glycolic acid, type I collagen sponge, and
fibrin glue, have been successfully induced to
differentiate into adipose tissue. This differentiation
has been confirmed with macroscopic morphology,
histology, and immunohistochemistry13,58,59. In our
experiments, ASCs isolated from green fluorescent
protein (GFP) transgenic mice were successfully
induced to differentiate into three-dimensional
adipose tissue after 8 weeks of implantation.
Moreover, immunohistochemical analysis showed
that the newly formed adipose tissue originated
mostly from the transplanted ASCs derived from
the GFP transgenic mice. These results indicate that
newly formed tissue is composed mainly of
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Fig. 3 Local implantation of ASCs into the flap decreased ischemia and lengthened subsequent 
survival. A: By postoperative day 7, the regions of survival and necrosis were clearly 
demarcated in the flaps and were easily distinguished by blinded observers. (left) Control 
(Dulbecco’s modified Eagle medium); (center) injection of ASCs at the flap base; and (right) 
injection of ASCs at the center of the flap. B: Fluorescence distribution of DiI-labeled 
ASCs in the surviving areas of the flap. No fluorescent cells were identifiable in the 
control group (left). When ASCs were injected in the base of the flap, fluorescent density 
increased in the pedicle area (center). The fluorescence was evident in the area around 
the injection site, ranging from 0.5 to 2.0 cm distal to the pedicle (right). (Small arrow 
shows the base of the flap and large arrow shows 1.5 cm distal to the base of the flap). 
(Reprinted from Lu et al. Plast Reconstr Surg. 121: 50, 2008)

transplanted ASCs13 (Fig. 2).
In a rat ischemic hindlimb model, the intravenous

or intramuscular administration of ASCs, which are
negative for CD31, dramatically improved the
vascular supply34,35,51,60,61. This mechanism accounts for
both the direct differentiation of ASCs into
endothelial cells and the indirect effect of ASCs,
which secrete angiogenic growth factors. Consistent

with the results of the ischemic hindlimb study, the
survival area of an ischemic skin flap can also be
increased by local injection of autologous ASCs into
the skin flap12 (Fig. 3).
Topical administration of ASCs onto skin ulcers

can accelerate the healing process of the skin
wound11. In our such study, chemically-induced
intractable ulcers were covered with ASCs in
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Fig. 4 Histological assessment of chemically mediated intractable ulcers treated with ASCs in 
conjunction with type I collagen sponge on days 7 and 14 after initial wounding. As 
compared with the control, ASC-treated groups showed greater numbers of mature 
vessels containing erythrocytes (arrows) and thickened granulation tissue. (Scale bar; 
500 mm) (Reprinted from Nambu et al. Would Repair Regen. 15: 505, 2007)

conjunction with a type I collagen sponge, which
increase both granulation thickness and capillary
density when compared with a collagen sponge
without ASCs (Fig. 4). Further studies performed by
the same research group showed that skin ulcers in
diabetic mice were also repaired with autologous
ASCs62, indicating that ASCs can be used to treat
skin ulcers, even in patients with diabetes.
Composite tissue regeneration by non-lineage-

committed ASCs has also been confirmed.
Periodontal tissue is composed of cementum (outer
surface of the dentin), connected to the alveolar bone
by periodontal ligaments, which lie perpendicular to
the bone. Tobita et al. have clearly demonstrated
that ASCs can promote periodontal tissue
regeneration in a rat model14. Isolated ASCs,
together with platelet-rich plasma obtained from
inbred rats, were implanted into a periodontal tissue
defect. The group observed that the regeneration of
alveolar bone and cementum, and of a periodontal
ligament-like structures 8 weeks after implantation
and confirmed their results by histological and
immunohistochemical analysis (Fig. 5).

A variety of tissues and organs engineered with
ASCs have been described in addition to those we
have described above. These include cranial bone
regeneration63, articular chondrocyte regeneration64,
cardiac wall regeneration65, the functional repair of
myocardial infarction66, and functional improvement
of stroke67.

Current Clinical Applications

On the basis of both in vitro experiments and pre-
clinical studies, ASCs have been applied to various
clinical fields. In the first clinical case, autologous
ASCs were used for the regenerative treatment of
widespread traumatic calvarial bone defects68. A 7-
year-old girl with post-traumatic calvarial defects
was treated with autologous cancellous iliac bone
combined with autologous ASCs, fibrin glue and a
biodegradable scaffold. Post-operative computed
tomography showed new bone formation, and almost
complete calvarial continuity was obtained.
The transfer of ASCs combined with free fat has

been reported to play an important role in
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Fig. 5 Histological cross-section of the periodontal tissue defects 8 weeks after implantation of 
ASCs. A: In the ASC/platelet rich plasma (PRP) group, a cementum-like structure and 
alveolar bone with alveolar cristae had regenerated (scale bar: 100 mm). B: High 
magnification of the defects in the ASC/PRP group showed a periodontal ligament-like 
structure located perpendicularly between the cementum-like structure and the 
alveolar bone (scale bar: 50 mm). C: Alveolar bone regeneration was observed at the 
lowest level, although alveolar cristae were not seen in the PRP group (scale bar: 100 
mm). D: A periodontal ligament-like structure was not evident between the alveolar 
bone and the dentin surface in the PRP group (scale bar: 100 mm). E: Little bone 
regeneration or alveolar cristae were noted in the no-implantation group. In addition, the 
volume of the gingiva was decreased (arrow) (scale bar: 100 mm). F: In the no-
implantation group, dense collagen fibers and granulation tissue occupied the space 
between the dentin surface and alveolar bone (scale bar: 50 mm). ＊ alveolar bone,  
＊ ＊ dental root, ＊ ＊ ＊ regenerated bone, ＊ ＊ ＊ ＊ periodontal tissue-like structure. (Reprinted 
from Tobita et al. Tissue Eng. 14: 945, 2008)

maintaining the volume of the injected fat tissue69.
Free fat injection, together with ASCs isolated from
the equivalent liposuction aspirates, termed cell-
assisted lipotransfer (CAL), could become an

alternative to soft tissue augmentation surgery,
including cosmetic breast augmentation70.
Autologous ASC therapy could also be used to

treat fistulas in patients with Crohn’s disease. In a
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pilot study of 5 patients with Crohn’s disease, the
external opening in 6 out of 8 fistulas could be closed
by inoculation of the fistulas with autologous ASCs71.
Since this report was published, ASCs have been
also used to repair tracheomediastinal fistulas
caused by cancer ablation72.
The therapeutic potential of ASCs for wound

healing, which has also been shown in our pre-
clinical studies11,62, can be anticipated for the
treatment of chronic ulcers caused by radiation
therapy73. Twenty patients being treated for the side
effects of radiotherapy, and with severe symptoms
or irreversible functional damage, received
autologous ASCs delivered via repeated hypo-
invasive computer-assisted injections. The clinical
outcome was systematic improvement or remission
of symptoms in all patients evaluated. Although the
mechanism of therapy at the molecular level is
unknown, this therapeutic approach may play a
pivotal role in the treatment of intractable ulcer.
In addition, ASCs have in vivo immunosuppressive

properties that can be used to control graft-versus-
host disease (GVHD)74. On the basis of this findings,
ASCs were administered intravenously to patients
with steroid-refractory acute GVHD75. In this clinical
trial, acute GVHD resolved completely in 5 out of 6
patients, 4 of whom were alive, without side effects,
after a median follow-up period of 40 months.
Finally, clinical trials of ASCs for the treatment of

both chronic heart failure and acute myocardial
infarction have begun in Europe. Although results of
these studies have not been published, ASCs as well
as bone marrow-derived MSCs are a promising
source of cell-based therapies for the treatment of
cardiovascular diseases.

Future Directions

We have recently researched the alternative
application of ASCs for tissue repair and healing.
Our preliminary data indicate that: (1) local injection
of ASCs into skin ulcers induces rapid healing with
less scarring in a rat model; (2) topical application of
ASCs with fibrin glue around the site of primary
Achilles tendon repair in rabbits dramatically
increases the tensile strength of the tendon by both

direct differentiation of ASCs into tenocytes and by
the indirect effect of the release of growth factors,
such as VEGF; and (3) topical administration of
ASCs around the site of primary sciatic nerve repair
in rats improves the functional restoration of the
sciatic nerve, a result that has been confirmed by
gait analysis, electroneurography and histology.
These therapeutic models may be applicable to
clinical situations in which the local environment for
wound healing is compromised by inadequate blood
supply and severely scarred tissue.
Gimble et al. have shown that ASCs delivered into

an injured or diseased tissue may secrete cytokines
and growth factors that stimulate recovery in a
paracrine manner19. ASCs modulate the “stem cell
niche” of the host by stimulating the recruitment of
endogenous stem cells to the site and promoting
their differentiation along the required lineage
pathway. In a similar way, ASCs could provide
antioxidants, free radical scavengers, and
chaperone�heat shock proteins at an ischemic site.
As a result, toxic substances released into the local
environment would be removed, thereby promoting
recovery of the surviving cells19.
The easily repeatable access to subcutaneous

adipose tissue provides a clear advantage for the
isolation of MSCs, and both the isolation and culture
techniques are easier to perform than bone marrow
isolation. For the present generation, excess
subcutaneous fat around the “waist” is generally
considered to be a “waste”. However, as stated
above, adipose tissue is now regarded to be a rich
source of stem cells. Further pre-clinical and clinical
studies need to be performed so that ASC-based
therapies fulfill expectations and can be successfully
used to treat disorders for which the present
medical and surgical therapies are either ineffective
or impractical.
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