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Abstract

In many human cancers, tumorigenic potential is not equally shared by all cells but is
restricted to phenotypically distinct subpopulations termed cancer stem cells. Cancer stem
cells are also capable of both self-renewal and differentiation, and these functional properties
have been suggested to play major roles in tumor initiation and progression. The factors
responsible for the development of cancer stem cells and their subsequent regulation are
unclear, but several chronic inflammatory states have been associated with an increased risk
of malignancy. Therefore, it is possible that specific processes associated with chronic
inflammation, as well as the adaptation to cellular stress, regulate cancer stem cells. Several
factors associated with chronic inflammation, including cytokines, oxidative stress, and hypoxia,
induce the activation of specific cellular response programs that can affect the survival,
proliferation, metabolism, and differentiation of cancer cells, as well as the self-renewal and
quiescence of normal stem cells. In this review, we discuss how these adaptive processes
potentially become subverted to enhance the development and function of cancer stem cells.
(J Nippon Med Sch 2011; 78: 138―145)
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Introduction

Normal adult tissues are composed of cell of
different types which are arranged in a hierarchal
manner. Stem cells sit at the top of this hierarchy
and give rise to the full range of differentiated cell
types capable of specific effector functions.
Furthermore, stem cells have the ability to undergo
the self-renewal and long-term proliferation that
maintain tissue homeostasis and permit regeneration
following injury. Accumulating evidence has

suggested that some cancers may be similarly
arranged in a hierarchical fashion in which self-
renewal potential is restricted to functionally and
phenotypically unique subpopulations of cancer stem
cells (CSCs)1. Parallels between the organizations of
normal tissues and of malignant tissues were initially
described in acute myeloid leukemia (AML). Primary
leukemic cells resembling normal hematopoietic
stem cells were found to be capable of both
producing relatively well differentiated leukemic
blasts that phenotypically recapitulated the original
clinical specimen and underwent self-renewal, as
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evidenced by serial transplantation in
immunodeficient mice 2. Similar findings have
subsequently been described in a wide variety of
malignancies3―7, and these functional attributes have
suggested a broad role for CSCs in disease initiation,
relapse, and progression8.

Many chronic inflammatory states have been
associated with an increased risk of cancer9, and
several factors arising from chronic inflammation
have been implicated in tumor initiation,
maintenance, and progression10. Some of these
factors, including the production of genotoxic
reactive oxygen species (ROS) and inflammatory
cytokines that support tumor cell proliferation and
survival, may act intrinsically to promote tumor
formation. Moreover, significant alterations to the
extracellular environment, such as increased tissue
hypoxia, may also contribute to carcinogenesis.
Because many of these processes regulate normal
stem cell functions, it is possible that chronic
inflammation and the adaptive responses to cellular
stress underlie the generation and regulation of
CSCs. In this review, we describe how factors
arising from chronic inflammatory states might both
affect the formation of CSCs and regulate their
malignant properties.

Chronic Inflammation and Cancer

The association between inflammation and cancer
has been established in a wide variety of diseases.
Chronic persistent infections may increase the risk
of cancer, and in some diseases, the infectious agent
itself may play a direct role in carcinogenesis. For
example, cervical carcinoma is associated with
human papillomavirus infections, and specific viral
genes, such E6 and E7, can transform or immortalize
epithelial cells11. Human Epstein-Barr virus may also
be oncogenic and is associated with a number of
human cancers, including Hodgkin and Burkitt
lymphomas and nasopharyngeal carcinoma12.
Although viral gene products may serve as
oncogenes, the development of cancer is a rare
event compared with infections with each of these
viruses. Therefore, other factors, including sustained
inflammatory responses, are likely to be required for

transformation13,14.
Other chronic inflammatory states occurring in

the absence of infections have also been associated
with the development of cancer. Inflammatory bowel
diseases, including ulcerative colitis, have been
associated with increased rates of colon
adenocarcinoma15,16. In addition, chronic
gastroesophageal reflux disease and Barrett’s
esophagus may lead to epithelial metaplasia and
increase the risk of esophageal carcinoma17.
Importantly, these sustained inflammatory states
have not been definitively associated with a specific
infectious agent and are thought to arise from
autoimmune or mechanical dysfunction within the
digestive system. Therefore, a myriad of factors
involved in both tissue injury and repair are likely to
influence the development of cancer from these
chronic inflammatory states.

Carcinogenic Factors Arising from
Chronic Inflammation

Inflammatory Cytokines
Cytokines play several potential roles linking

chronic inflammation with the development of
cancer. Several cytokines, including tumor necrosis
factor (TNF)-α, interleukin (IL)-1β, IL-6, and
transforming growth factor (TGF)-β, are produced
during chronic inflammation, and each has been
strongly associated with human cancers10,18. High
production of TNF-α associated with specific
polymorphisms has been found to increase the risk
of both multiple myeloma and gastric carcinoma and
correlates with a poorer prognosis in each19,20. TNF-α
may also play an important role in tumor initiation
by stimulating the production of intracellular ROS
that may damage DNA and lead to genomic
mutations21. IL-6 is another prototypic inflammatory
cytokine and may directly influence tumor growth
by enhancing the proliferation and survival of
malignant cells in multiple myeloma, non-Hodgkin’s
lymphoma, and hepatocellular carcinoma22,23. Both
TNF-α and IL-1β have been found to activate
hypoxic signaling pathways in human hepatoma
cells24, suggesting that these inflammatory cytokines
influence tumor growth both indirectly, by
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modulating the microenvironment, and directly, by
regulating tumor cells. TGF-β has also been reported
to affect the microenvironment and enhance tumor
formation by suppressing the antitumor activity of
T-cells, natural killer cells, neutrophils, monocytes,
and macrophages that are involved in protective
surveillance mechanisms25. Therefore, it is likely that
the cytokines and growth factors produced during
chronic inflammation have pleotropic effects on
tumor formation and growth that involve both direct
effects on tumor cells and indirect effects by
promoting favorable conditions within the
microenvironment.

Oxidative Stress
Activated immune cells are the primary source of

increased levels of ROS (O2
-, H2O2, OH, HOCL) that

may broadly enhance tumorigenesis. Perhaps most
directly, ROS can induce genotoxic damage that
results in oncogenic mutational events10. In addition,
increased intracellular ROS levels may induce the
activation of redox-sensitive transcription factors
that enhance tumor formation26,27. For example, the
Forkhead box class O (FoxO) transcription factors
are activated and translocated into the nucleus in
response to increased levels of ROS through the c-
Jun N-terminal kinase-dependent signaling pathway
and then induce the expression of cellular proteins
that serve as ROS scavengers and attenuate cellular
damage28―30. FoxO transcription factors also regulate
a wide variety of additional cellular functions, such
as proliferation, apoptosis, and differentiation, that
may promote tumorigenesis and cancer
progression31―34.

Hypoxia
Chronic inflammatory disorders are frequently

associated with an increased incidence of anemia,
which may result in increased tissue hypoxia.
Several cytokines released during immune responses
can inhibit both hematopoiesis and erythropoiesis35.
For example, increased levels of circulating IL-6 may
decrease serum iron levels and the subsequent
production of red blood cells36. Although evidence
directly implicating anemia as a cause of cancer is
lacking, a nested case-control study in a large cohort

of blood donors has demonstrated that a large
proportion of patients with hematologic malignancies
had anemia 2 to 3 years before diagnosis. A similar
pattern of anemia has been observed in
gastrointestinal cancer37. Therefore, relative tissue
hypoxia arising from anemia may promote tumor
initiation and progression, or alternatively, the
suppression of normal erythropoiesis may be a
sensitive and early indicator of tumor occurrence.

Tissue Repair and Regeneration
Chronic injury associated with inflammatory

conditions, such as sclerosing cholangitis and
inflammatory bowel disease, has been associated
with an increased risk of cancer15,16. Tissue repair
and regeneration may involve specific pathways,
such as Notch, Wnt, and Hedgehog (Hh), that are
required during normal embryonic development.
Although these pathways are subsequently silenced
in most tissues, they may be reactivated following
tissue injury to promote repair. Moreover, aberrant
activation of these pathways has been implicated in
a large number of human cancers38. Therefore,
dysregulation of pathways involved in tissue
regeneration may promote carcinogenesis.

Chronic Inflammation and Normal
Stem Cell Function

In addition to potential effects on carcinogenesis,
several factors produced during chronic
inflammation may directly affect normal stem cell
function. For example, TNF-α has been found to
induce neural stem cell proliferation and to inhibit
differentiation into neuronal progenitor cells through
nuclear factor κB signaling and increased expression
of cell cycle regulators, including cyclin D139.
Furthermore, the gp130 protein, which is a part of
the receptor of IL-6, has been reported to play a role
in the self-renewal of hematopoietic stem cells40.

ROS levels may also regulate normal stem cells,
perhaps best exemplified by their effects on normal
hematopoiesis28,29. Hematopoietic stem cells appear to
have lower levels of ROS than their mature progeny,
and this feature may maintain their self-renewal
potential by inhibiting differentiation41,42. Moreover,
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conditional inactivation of several genes, including
the FoxO3 transcription factors, p53, and p38
mitogen-activated protein kinase, has been
associated with increased ROS levels and the loss of
hematopoietic stem cell function 43 ― 45. FoxO 3
activation normally attenuates ROS levels via the
ataxia telangiectasia mutated gene (ATM)46, which
mediates the cellular response to DNA and oxidative
damage47. Accordingly, the loss of ATM also results
in increased ROS levels and depletion of the
hematopoietic stem cell pool42,48. It is likely that
increased ROS levels within hematopoietic stem cells
induce cellular damage and apoptosis. However, the
loss of FoxO3 also results in increased proliferation,
and the loss of cellular quiescence also likely
contributes to decreased hematopoietic stem cell
function49. In a similar manner, the loss of FoxO3
function results in reduced numbers and function of
normal stem cells in the central nervous system50.
Therefore, ROS levels may affect normal stem cells
by modulating their survival or functional properties,
which include self-renewal and differentiation.

Similar to oxidative stress, hypoxia may also
regulate stem cell quiescence and self-renewal51―53.
The cellular response to oxygen levels is regulated
by the transcriptional activity of hypoxia-inducible
factors (HIFs). Both hematopoietic stem cells and
neural stem cells are thought to reside in regions of
relatively low oxygen content54. These relatively
hypoxic conditions lead to increased activity of HIF-
1α and the expression of HIF-transcriptional targets,
including FoxO3, that are important for the
maintenance of the hematopoietic stem cell pool55.
Therefore, HIF-1α activity may promote cellular
quiescence and preserve self-renewal in response to
hypoxia via such factors as FoxO349,56.

By their very nature, several pathways activated
during tissue regeneration are required for normal
stem cell function. During normal development, the
Hh, Notch, and Wnt pathways play critical roles in
stem cell fate decisions required for proper
patterning and organogenesis. Moreover, these
pathways have been implicated in the regulation of
stem cell self-renewal and differentiation in many
adult tissues, including hematopoietic tissues and the
central nervous system57.

Potential Role of Inflammation in Cancer Stem
Cell Initiation, Regulation, and Function

Chronic inflammatory states may affect both
carcinogenesis and normal stem cell function, and it
is possible that the convergence of these activities
contributes to the formation or regulation or both of
CSCs. Increased intracellular ROS levels generated
by immune effectors or inflammatory cytokines are
a common feature of chronically inflamed tissues and
may have multiple effects on CSCs. The self-renewal
of normal hematopoietic stem cells is modulated by
ROS levels, in part through the regulation of FoxO
transcription factor activity49. A recent study using a
mouse model of chronic myeloid leukemia (CML) has
found that FoxO3 activity is required for the
maintenance of leukemic stem cells58. Therefore, it is
possible that increased ROS levels induced during
chronic inflammation promote aberrant self-renewal
through mediators, such as FoxO3. Moreover,
increased intracellular ROS levels may induce DNA
damage within CSCs which results in additional
mutations that promote disease progression. Several
adaptive mechanisms are normally activated in
response to increased oxidative stress and may
promote drug resistance in cancer59―61. In some
diseases, CSCs have been found to show increased
levels of ROS compared with their normal
counterparts41, and it is possible that these adaptive
processes, including the activation of FoxO and
ATM, are responsible for the relative drug
resistance that has been attributed to CSCs.

Another hallmark of chronic inflammatory states
is increased local levels of cytokines and growth
factors, and accumulating data suggest that CSCs
may be modulated by these factors. For example, IL-
6 has been found in enhance the tumorigenicity and
self-renewal of CSCs in glioblastoma62,63. Furthermore,
TGF-β may regulate CML stem cells by regulating
the activity of Akt signaling58. Therefore, soluble
factors released by inflammatory cells may
positively regulate CSCs. In addition, TGF-β is a
well-recognized regulator of the epithelial-to-
mesenchymal transition (EMT) in solid tumors, and
this process is thought to play an important role in
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the development of metastatic disease64. The EMT is
characterized by the loss of epithelial markers (E-
cadherin), the gain of mesenchymal markers (N-
cadherin and vimentin), and the induction of the
Snail family of transcriptional regulators, which
result in increased cellular motility and invasive
potential65,66. The EMT may represent a transitional
state for epithelial cells which promotes their
adaptation to cellular stress, and recent data suggest
that cancer cells possessing features of the EMT
have enhanced stem cell properties. In immortalized
mammary epithelial or breast cancer cells, treatment
with TGF-β or forced expression of Snail or Twist
induces phenotypic CSC markers and enhances
tumorigenicity both in vitro and in vivo67,68. Moreover,
enhanced ROS levels can induce EMT, suggesting
yet another mechanism by which chronic
inflammation may induce the formation of CSCs69,70.

Hypoxic conditions may play an important role in
the regulation of CSCs71. Recent studies in brain
tumors demonstrate that HIF-1α is active within
CSCs located in the hypoxic niche72. Moreover, the
activation of HIF-1 α maintains both an
undifferentiated phenotype and self-renewal
capacity73. In the bone marrow, hypoxic niches and
HIF-1α play critical roles in the regulation of normal
hematopoietic stem cells 71. Recent reports
demonstrate that the bone marrow environment
filled with leukemic cells is hypoxic74,75 and that HIF-
1α is present in leukemic cells in patients with
primary acute lymphoblastic leukemia76. Moreover,
emerging data suggest that alterations in tumor cell
metabolism affect both ROS and HIF-1α levels that
may regulate CSCs. In AML, somatic mutations of
isocitrate dehydrogenase have been identified, and
the loss of the normal isocitrate dehydrogenase
activity increases ROS levels and HIF-1α activity77,78.
Similar mutations may occur during the
transformation of myeloproliferative diseases to
AML, suggesting that both ROS and HIF-1α may
further alter CSC function during disease
progression79,80. It is also possible that relative tissue
hypoxia may enhance the metastatic potential of
CSCs, as HIF-1α activation can promote the EMT
directly by inducing the expression of Twist81,82.
Therefore, hypoxic stress following tissue injury

may promote the formation of CSCs and regulate
their functional properties through multiple
mechanisms.

Several processes regulating tissue repair may
also be potentially subverted to alter normal stem
cell function. For example, developmental signaling
pathways may be necessary for tissue regeneration
by modulating the activities of normal stem cells.
However, during chronic injury, their sustained
activation may lead to aberrant stem cell expansion
or dysregulation of self-renewal and result in
carcinogenesis83. For example, mutations within
components of the Hh signaling pathway may lead
to the development of skin cancers and brain
tumors, suggesting that aberrant pathway activation
induces the formation of cancer stem cells in each of
these diseases83. Increased Hh signaling has also
been identified within CSCs in CML, multiple
myeloma, glioblastoma, and pancreatic cancer, and
pharmacologic inhibition of the Hh pathway may
prevent tumorigenicity, self-renewal, and metastatic
potential83. Therefore, the inhibition of developmental
signaling pathways may serve as novel strategies to
inhibit CSCs.

Conclusion

Chronic inflammation is clearly associated with an
increased risk of cancer. Although the precise
events that lead to tumor formation are unknown, it
is possible that specific factors, such as inflammatory
cytokines, increased ROS levels, hypoxia, and the
activation of developmental signaling pathways, play
critical roles by regulating CSCs. These processes
are likely to interact with one another in complex
ways to ultimately affect both cancer formation and
CSC functions, such as self-renewal, drug resistance,
and metastatic potential. Further elucidation of the
mechanisms by which these factors influence CSC
may lead to improved strategies to prevent cancers
and to the development of novel therapeutic
targeting approaches.
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