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Abstract

The conceptual framework of statistical tests and statistical inferences are discussed, and
the epidemiological background of statistics is briefly reviewed. This study is one of a series in
which we survey the basics of statistics and practical methods used in medical statistics.
Arguments related to actual statistical analysis procedures will be made in subsequent papers.
(J Nippon Med Sch 2011; 78: 274―279)
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1. Introduction

Statistics is used in medicine because of the need
to adapt medical investigations to principles of
natural science and because medical phenomena are
nondeterministic by nature.
The principle of natural science is to formulate

hypotheses for certain phenomena and to verify the
hypotheses by objectively considering the available
evidence. To make objective verification possible, we
must quantitatively formulate the hypothesis using
mathematical terms.
In the case of medical science, phenomena may be

considered random to some degree. What is
observed is the result of necessity and chance, and
medical phenomena are governed by both
deterministic and nondeterministic laws. The
nondeterministic nature requires a probabilistic view
in theoretical considerations, and the principle of
objectivity requires statistical methods to analyze
experimental results.

Statistics has therefore been indispensable in
medical investigations. However, statistics has a long
history and many techniques have been developed,
making a comprehensive understanding of its scope
difficult to obtain. Furthermore, for medical uses, it
is not sufficient to manage pure statistics, and we
need to be acquainted with the links between
medicine and statistics.
This study is one of a series in which we survey

statistical methods applied to medical science with
focuses on the following aspects: 1) basic concepts in
statistics, 2) typical statistical analysis procedures,
and 3) characteristic methods used in medical
statistics. In this study, we discuss basic concepts in
statistics, i.e. , statistical tests and statistical
inferences, and briefly review epidemiological ideas
for study designs. Arguments related to actual
statistical analysis procedures and characteristic
methods used in medicine will be made in
subsequent papers.
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Fig.　1　Schematic view of a statistical test. We perform experiments to obtain experimental data, 
while we have a null hypothesis that gives predictions. The predictions are compared with 
experimental data to test the consistency between the null hypothesis and experiments.

2. Principle of Statistical Tests

In this section, we review the fundamental
principle of statistical tests from a general viewpoint.

Nondeterministic Phenomena and Probability
Theory
When we analyze nondeterministic phenomena

such as medical problems in natural science context,
we need to be aware of the concept of probability.
Based on the concept of probability, we can apply
the principle of natural science to nondeterministic
phenomena by 1) formulating a probabilistic model
as a hypothesis for the nondeterministic phenomena
and 2) verifying the hypothesis by means of
experimental data (In this section, we use the term
“experiment” in a broad sense, i.e., observations
without any manipulative actions are included.).
However, the results of experiments in

nondeterministic phenomena are themselves non-
deterministic and random. This poses several
problems such as determining what deduction is to
be made from data obtained by chance. For
example, when we observe that the head of a coin
turns up 51 times in 100 tosses, there is no rationale
for insisting that 50 must be the average and the
remaining 1 must be due to statistical fluctuation.

Role of Statistics
Statistical analysis helps us to assess a hypothesis

related to specific nondeterministic phenomena
based on experimental data.
To identify the mechanism responsible for some

effect, we must construct an appropriate theoretical

model to describe the effect. However, in most cases,
such a task belongs to a more advanced stage of the
investigation. The first step that is required is to
determine whether or not the effect may have
occurred by chance. Using statistical analysis, we
can deduce that if there was no real effect, such
data would not have been obtained by chance, so
the data can be regarded as evidence of the
existence of some real effect. In other words, by
applying statistics, we can test the consistency
between the resulting data and the hypothesis
stating that there is no real effect. This hypothesis is
called a null hypothesis (Fig. 1).
To determine whether or not there is a real effect,

we need not address the mechanisms behind the
effect, but it suffices to test the null hypothesis.
However, even if we succeed in ascertaining that
there is an effect, a further specific study should be
devoted to identifying its mechanisms.

Principle of Statistical Tests
To test a hypothesis, it is necessary to analyze

experimental data, i.e., a sample.
In the context of epidemiology, a population

refers to a large ensemble which is the totality of
the subjects in our scope, and a sample is a small
part of the population consisting of subjects who are
actually observed. The aim of statistics is to deduce
the properties of a population by analyzing a sample.
The uncertainty of statistical assertion is due to the
fact that we observe only a sample and not an entire
population.
On the other hand, in the context of experiments

that take the form of repeated trials, populations and
samples are defined in a slightly different manner. In
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the case of repeated trials, we obtain data in the
form of a sequence of events. The totality of what
can be observed in a single trial is called a
population, and the result of repeated trials, which
is a sequence of events, is called a sample. For
example, in a coin-tossing problem, the result of a
single toss is a head or tail. Then, the population is
the set {head, tail} and a sample resulting from
repeated tosses is a sequence such as (head, tail,
tail, ... , head). The uncertainty of statistical assertion
in this case is due to the fact that the sample size is
finite.
In general, statistical analysis proceeds as follows:

we first formulate a null hypothesis for a population
and then test it by means of a sample. If the sample
is considered to be rare under the null hypothesis, it
is reasonable to deduce that the null hypothesis is
false, because the sample is statistically inconsistent
with the null hypothesis. In other words, we reject
the null hypothesis. In contrast, if the sample is not
considered to be rare under the null hypothesis, we
cannot eliminate the possibility that the sample was
obtained from a population that satisfies the null
hypothesis. In this case, we cannot reject the null
hypothesis, that is, we accept it. Acceptance of the
null hypothesis does not necessarily imply that it has
been confirmed. Instead, it implies that we lack
sufficient evidence to reject it.

Reliability of Statistical Tests
In the process of performing the statistical test

described above, we need to assess the rareness for
each sample. The rareness is expressed in terms of
a probability, and we refer to it as a P-value. Given a
P-value for a sample, we can state the rule for
statistical decision as follows. We reject the
hypothesis if the P-value is smaller than a prescribed
value, e.g., 5%. The cut-off point of 5% is called the
significance level of this statistical test.
The significance level indicates the degree of

uncertainty of the statistical decision. Because we
have only considered a sample of finite size, we
cannot entirely eliminate errors from the statistical
decision process. In a statistical test with a
significance level of 5%, we may incorrectly reject
(with probability of 5%) a null hypothesis, which is in

fact true. For a significance level of 0%, the null
hypothesis is never rejected. While such a decision is
error-free, the test is trivial and has no practical
effect. A non-zero significance level is a requirement
for a non-trivial and sensible decision to be made.

Definitions of P-value
The question that arises is how it is possible to

assess the rareness of a sample and obtain its P-
value. For example, let us consider the coin-tossing
problem and assume the null hypothesis that the
coin is fair, i.e., the head will turn up with a
probability of 1�2 in a single toss. As a result of 5
tosses, the sample (head, head, head, head, head)
would be rare, while the sample (head, tail, tail, head,
head) would not be extremely rare, because we
expect that the result will be “head” on average 2 or
3 times in 5 tosses. However, both samples appear
with the same probability of 1�25 = 1�32. This
implies that the rareness of a sample is not
measured by the probability that the sample may
appear. Instead, the key point is the number of
times that the head faces up, because there is only
one sample in which the head faces up all 5 times,
while there are 10 samples in which the head faces
up 3 times in 5 trials. In other words, we can define
the P-value based on the probability that the
number of heads assumes a given value. According
to this definition, the P-values of the above two
samples are 1�32 and 10�32, respectively.
In general, a statistic is a quantity whose value is

determined by a sample. The number of heads in
coin tossing is an example of a statistic that yields
the P-value of a sample in the statistical test.
However, there would be another statistic that
yields another P-value. As a matter of fact, the
actual definition of the P-value is not unique, but “to
define the P-value” is synonymous with “to choose a
statistical test.” Suppose that we perform two
separate statistical tests using the same data. The
probabilities that we may reject a true null
hypothesis are the same, if the significance levels are
the same. In this situation, we can compare the
powers of these statistical tests. Namely, there may
be a difference between the probabilities that we
may correctly reject a false null hypothesis.
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3. Principle of Statistical Inferences

In this section, we review the fundamental
principle of statistical inferences.

Point Estimation
In principle, fundamental laws of physics, such as

classical mechanics and quantum mechanics, can be
applied to any phenomenon observed in nature. In
practice, however, even a familiar phenomenon
should be dealt with by using a suitable
phenomenological theory instead of the fundamental
laws of physics. For example, results of coin tossing
are described by a phenomenological probabilistic
model instead of classical mechanics. One of the
advantages of phenomenological approaches is that
only a few parameters are included in the theory,
and it suffices to determine their values so that the
theory may be consistent with experimental data. In
the case of the coin-tossing problem, the probabilistic
model is characterized by the probability p with
which the coin shows the head in a single toss. The
value of p is estimated by experiments: if the head
faces up k times in n trials, we may deduce that p

will be k�n. This is an example of statistical
inference called point estimation.
The human body is so complicated that the

fundamental laws of physics cannot be applied to it
in a straightforward way. Nevertheless, biometric
quantities sometimes (approximately) obey a simple
statistical law, such as a normal distribution. This is
because many factors that weakly interact with
each other take part in such a phenomenon. We are
then able to describe the statistical aspects of such a
biometric quantity by determining a few
parameters, because typical statistical distributions
are characterized by one or two parameters. For
example, a binomial distribution, which is the
probability law in the coin-tossing problem, has one
parameter p that denotes the single-tossing
probability, and a normal distribution has two
parameters: mean and variance.
Here, we should make a distinction between the

value of a parameter that is determined by a sample
and its “true” value. We generically denote them by

μ and μ＊, respectively. The true value μ＊ is an
unknown constant that characterizes the statistical
distribution obeyed by the biometric quantity, while
μ is its estimator, whose value is determined by a
sample. In other words, μ is a statistic that
approximates μ＊. For example, in the coin-tossing
problem, the true value p＊ of the single-tossing
probability has the estimator p = k�n.
Using the notations μ＊ and μ introduced above,

we can express the point estimate as follows:
μ＊ � μ． (1)

This means that the true value μ＊ is likely to lie in
the neighborhood of the value of μ determined by a
sample.

Interval Estimation
The point estimate (1) lacks information regarding

the accuracy of the estimation, and hence an
interval estimate expressed as

μ1 < μ＊ < μ2 (2)
is desirable, where the limits μ1 and μ2 are
determined by a sample similarly as μ in (1).
For example, we consider a biometric quantity χ

that obeys the normal distribution with mean μ＊ and
variance 1, where μ＊ is unknown. An interval
estimate for μ＊ based on a single measurement of χ

is obtained as follows. Since χ-μ＊ obeys the
standard normal distribution, i.e., the normal
distribution with mean 0 and variance 1, the
following inequality holds with a probability of 95%:

-1.96 < χ - μ＊ < 1.96
or equivalently

χ - 1.96 < μ＊ < χ + 1.96． (3)
Therefore, if we obtain an experimental value χ =
10.00, we expect that μ＊ is likely to satisfy the
following bound:

8.04 < μ＊ < 11.96． (4)
This is the interval estimate for μ＊.
In general, if the inequality (2) holds with

probability p for a randomly chosen sample, the
interval that is obtained from (2) for a particular
sample is called a confidence interval with
confidence level p. The interval (4) is a confidence
interval with confidence level 95%. Whatever
definitions we give to the statistics μ1 and μ2 in (2) as
functions of a sample (as in (3)), we may encounter
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Fig.　2　A typical example of confidence intervals 
(shaded ones) for an unknown parameter μ＊ 
produced by using eight samples. To yield 
confidence intervals, we employ the 
inequality μ1 < μ＊ < μ2 that holds with a 
certain probability. The endpoints μ1 and μ2 
are statistics whose values are determined 
by a sample. In the above illustration, there 
are six “obedient” samples that give 
intervals containing the true value of μ＊, 
while the remaining two are “disobedient” 
in the sense that the produced intervals do 
not contain the true value of μ＊.

“disobedient” samples for which (2) does not hold
(Fig. 2). In fact, it is for this reason that procedures
have been put in place to appropriately define
statistics μ1 and μ2. This is in case the probability
distribution for the biometric quantity under
consideration is known to be a typical one, such as a
normal, binomial, or Poisson distribution.
We conclude this section by mentioning the

relationship that exists between statistical inferences
in this section and statistical tests in section 2.
Assume that a biometric quantity obeys a
probability distribution with a parameter μ＊ and let
(2) be an inequality that gives a confidence interval
with a confidence level of 95%. Furthermore,
consider a null hypothesis that is expressed as μ＊ =
0, for example. Then, we can realize a statistical test
with a significance level of 5% by setting the rule
that we accept the null hypothesis if and only if a
sample satisfies the following inequality:

μ1 < 0 < μ2.
In this sense, interval estimates include statistical
tests.

4. Notions Connecting Medicine and Statistics

In this section, we discuss a few notions

connecting medicine and statistics from an
epidemiological viewpoint. For details, we refer to
textbooks such as1,2.
In general, medical phenomena are considered to

be outcomes experienced by patients. People receive
various exposures, such as making contact with
patients or taking preventive injections, which can
influence (cause or prevent) the outcomes. To
establish existence of a cause-effect relationship
between the outcome and exposure based on
statistical analyses, various study designs are used
for medical investigations. Some study design may
be used simply to confirm statistical associations
instead of a cause-effect relationship.

Study Designs
Designs of nonexperimental studies are described

in terms of epidemiology. We present profiles of a
few typical study designs below.
A cohort study is the most basic study design in

medicine. In a canonical cohort study, selections are
first made from a population to obtain cohorts, each
of which is representative of persons sharing the
same state of exposure. Next, we observe what
happens in each cohort for some period of time. On
the basis of these observations, the cohorts are
mutually compared with respect to aspects of
incidence of outcomes, and we then identify the
exposure that is responsible for the outcomes. This
study design works successfully for frequent
outcomes, but is not efficient for rare outcomes.
A case-control study is particularly well suited

for examining rare outcomes. In this study design,
cases with outcomes of interest are pooled together
to form a case group. However, to correctly
determine risk factors for outcomes, we need a
control group, in which persons without the outcomes
of interest are pooled. These groups are then
compared with respect to aspects of exposure, and
the relevant exposure is identified. This study
design has the advantage of allowing us to efficiently
use limited case resources. On the other hand, we
should consider its disadvantages such as the likely
introduction of various biases, including the
confounding factors explained below.
A cross-sectional study can be used when we are
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interested in statistical properties of a population
rather than a cause-effect relationship between
items. In this study design, a selection is made from
a population at a point of time (or during a short
period of time) to obtain a sample of persons
irrespective of exposure and outcomes. We then
search for statistical associations between observed
items in the sample. In principle, in this study
design, we cannot determine a cause-effect
relationship between items, because exposure and
outcomes have equal significance. Furthermore, as
the observation is not made over a long time period,
what is observed is the prevalence of various health
states of people instead of the incidence of health
events. For the same reason, there is a tendency to
detect more likely health states that continue for a
long time rather than those that do not. This
tendency may sometimes give rise to a paradoxical
result.

Confounding
A statistical association should be distinguished

from a cause-effect relationship especially in
nonexperimental studies in which we cannot control
exposure manually.
Suppose that we have found a statistically

significant association between two events A and B.
This does not imply that A causes B. For example,
the rustles of leaves are not the cause of the wind,
although they are statistically associated with each
other. Furthermore, we cannot declare that either A

causes B or B causes A, because another event C

may cause both A and B. In general, if C causes B

and if C is associated with A, then A and B have a
statistical association, although A is not directly
responsible for B. An event such as C is called a
confounding factor.
For example, let us consider the following three

matters: recovering from a disease (D), taking
medicine (M), and drinking water (W). There are
four possibilities: 1) W has no direct effect on D but
M confounds their relation; 2) M has no direct effect
on D but W confounds their relation; 3) neither has a
direct effect on D; and 4) both have direct effects on

D. For the last option, we may want to assess the
net effect of M (or W) on D by controlling the
confounding factor W (or M, respectively). We
describe this viewpoint by means of another
example below.
Consider a case-control study in which we want to

conclude that a particular health habit (H) is a risk
factor for a disease (D), when age (A) is a known risk
factor for D. In this situation, A could be a
confounding factor, if A and H have a statistical
association. Therefore, it is necessary to eliminate
the possible influence of A on D so that we can
assess the net effect of H on D. To this end, when
we sample the cases and controls, we can perform
either specification or matching. In specification, we
select only persons within a specific age region for
both cases and controls. In matching, we select the
control group so that i) a case and control possess
pairs having the same age (pairwise matching) or ii)
the control group has the same age distribution as
the case group (frequency matching). Alternatively,
when we analyze the data, we can stratify the data
(stratification). To do this, the case group and
control group are respectively decomposed into
subgroups (strata) with respect to age, and the effect
of H on D is analyzed in each stratum. Furthermore,
to resolve confounding, we can perform a
multivariate analysis that is based on some
mathematical model on the effects of A and H on D.
Finally, we emphasize that study protocols must

be explicitly written. In particular, definitions of
procedures employed in investigations should be
operational rather than conceptual.
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