Novel Therapeutic Targets for Sepsis: Regulation of Exaggerated Inflammatory Responses

Akihisa Matsuda^{1,2}, Asha Jacob¹, Rongqian Wu¹, Monowar Aziz¹, Weng-Lang Yang¹, Takeshi Matsutani², Hideyuki Suzuki², Kiyonori Furukawa², Eiji Uchida² and Ping Wang¹

¹Department of Surgery, North Shore University Hospital and Long Island Jewish Medical Center, Manhasset and Laboratory of Surgical Research, the Feinstein Institute for Medical Research, Manhasset, NY, USA ²Department of Surgery, Nippon Medical School, Tokyo, Japan

Abstract

Sepsis is a devastating and complex syndrome and continues to be a major cause of morbidity and mortality among critically ill patients at the surgical intensive care unit setting in the United States. The occurrence of sepsis and septic shock has increased significantly over the past two decades. Despite of highly dedicated basic research and numerous clinical trials, remarkable progress has not been made in the development of novel and effective therapeutics. The sepsis-induced physiologic derangements are due largely to the host responses to the invading microorganism in contrast to the direct effects of the microorganism itself. Sepsis, the systemic inflammatory response to infection, is marked by dysregulated production of pro-inflammatory cytokines. Although pro-inflammatory cytokine production is normally indispensable to protect against pathogens and promote tissue repair, the dysregulated and prolonged production of these cytokines can trigger a systemic inflammatory cascade mediated by chemokines, vasoactive amines, the complement and coagulation system, and reactive oxygen species (ROS), amongst others. These mediators collectively lead to multiple organ failure, and ultimately to death. In this regard, the role of inflammation in the pathophysiology of sepsis, although still incompletely understood, is clearly critical. Recent findings resulting from vigorous investigations have contributed to delineate various novel directions of sepsis therapeutics. Among these, this review article is focused on new promising mechanisms and concepts that could have a key role in anti-inflammatory strategies against sepsis, including 1) "inflammasome": a multiprotein complex that activates caspase-1; 2) "the cholinergic anti-inflammatory pathway": the efferent arm of the vagus nerve-mediated, brainto-immune reflex; 3) "stem cells": unspecialized and undifferentiated precursor cells with the capacity for self-renewal and potential to change into cells of multiple lineages; 4) "milk fat globule-EGF factor VIII (MFG-E8)": a bridging molecule between apoptotic cells and phagocytes, which promotes phagocytosis of apoptotic cells. (J Nippon Med Sch 2012; 79: 4-18)

Key words: sepsis, inflammation, inflammasome, cholinergic pathway, stem cells, MFG-E8

Correspondence to Ping Wang, MD, Laboratory of Surgical Research, the Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA E-mail: pwang@nshs.edu Lournal Wabsite (http://www.nms.ac.ip/inms/)

Introduction

Sepsis is the tenth leading cause of death in the United States and, from 1999 to 2005, over one million deaths, 6% of overall death, were attributed to sepsis¹². The mortality rates of severe sepsis and septic shock ranges from 25% to 70% when complicated by shock and multiple organ failure³⁻⁶. The incidence of sepsis and septic shock has increased significantly over the past two decades7-9 and the economic burden of severe sepsis is becoming alarmingly high³. Sepsis is characterized by infection with systemic inflammatory state which represents clinical manifestations of the following: altered body temperature of $>38^{\circ}$ C or $<36^{\circ}$ C, tachycardia, tachypnea, and abnormalities of white blood cell count. Systemic inflammatory response syndrome (SIRS) can be diagnosed when two or more of these criteria are present¹⁰. "Severe sepsis" is defined as sepsis associated with organ dysfunction, hypoperfusion, or hypotension. The manifestations of hypoperfusion may include, but are not limited to, lactic acidosis, oliguria, or an acute alteration in mental status. "Septic shock" is a subset of severe sepsis and is defined as sepsis-induced hypotension despite adequate fluid resuscitation. It includes perfusion abnormalities such as lactic acidosis, oliguria, or an acute alteration in mental status. Patients receiving inotropic or vasopressor agents may not be hypotensive at the time that perfusion abnormalities are measured^{11,12}. Although recent treatment modalities and interventions including broad-spectrum antibiotics, intravenous ventilation, fluids resuscitation, artificial glucocorticoids, intensive insulin therapy, and recombinant human activated protein C, have contributed to the modest improvement of patient outcome^{5,13,14}, the high mortality rate of severe sepsis suggests the necessity for additional therapies. So far, vigorous experimental basic studies have been undergone to identify the effective therapy for sepsis and these novel therapies may be tested in clinical situation in the future. Herein, we review the therapeutic potentials of new concepts and modalities for sepsis, which is under experimental investigation, and the plausible mechanisms, focusing the regulation of exaggerated inflammatory responses in sepsis.

Systemic Inflammatory Response in Sepsis

The physiologic derangements elicited by sepsis in large part are due to the host responses to the invading microorganism as opposed to the direct effects of the microorganism itself. Sepsis is characterized by a systemic inflammatory response, mediated by innate immune cells, including neutrophils, monocytes, and macrophages. А production of pro-inflammatory cytokines, including tumor necrosis factor (TNF)- α , interleukin (IL)-1, IL-6, and IL-8, normally triggers beneficial host innate immune responses to confine the infection and tissue damage. However, in sepsis, the excessive and prolonged production of these cytokines can produce overwhelming inflammatory responses, even more deadly than the original infection. This theory is especially notable in severe sepsis, where the excessive production of pro-inflammatory cytokines causes capillary leakage, tissue injury, and lethal multiple organ failure¹⁵⁻¹⁷. It is also reported that elevated pro-inflammatory cytokine levels directly correlate with severity and mortality in human sepsis^{18,19}. However, despite undeniable successes in a huge number of preclinical studies, the clinical trials using direct anti-inflammatory strategies, such as anti-TNF- α , IL-1-based therapies, and high-dose corticosteroids, have failed with no establishment of a clear or consistent benefit in sepsis¹⁶. In this regard, experts agree that grouping patients with heterogeneous conditions under the same diagnosis of "severe sepsis" has led to a lack of significance and, failure to reproduce results in clinical trials.

The critical role of pro-inflammatory cytokines have been examined and proved in the pathophysiology of sepsis. These cytokines functionally contribute to the development of an acute phase response in the host manifested as fever, leukocytosis, alterations in glucose and muscle metabolism, and activation of the complement and coagulation cascades²⁰. Subsequently, persisted elevation of these cytokines result in a variety of pathologic phenomena, including priming of the vascular endothelium by synthesis of adhesion molecules, activation of neutrophils, synthesis of cyclooxygenase products, generation of nitrous oxide, reactive oxygen species (ROS), apoptotic cell death, and induction of hypotension and shock-like state²¹⁻²⁵. Furthermore, pro-inflammatory cytokines can up-regulate inflammatory mediator expression via positive feedback loop and, consequently, induce further detrimental phenomena²⁶.

Pathogen Recognition System in Sepsis

During infection, innate immune cells are activated by foreign molecular products, named pathogen-associated molecular patterns (PAMPs), such as lipopolysaccharide (LPS), flagellin, doublestranded RNA, and CpG DNA27. The initiation of the host response by recognition of PAMPs during sepsis or tissue injury involves three families of pattern recognition receptors (PRRs): 1) Toll-like receptors (TLRs); 2) NOD-like receptors (NLRs); and 3) RIG-I-like receptors (RLRs)^{28,29}. The interplay between these families of PRRs ensures the efficient co-ordination of innate immune responses, through either synergistic or co-operative signaling. Members of the TLR family recognize bacteria, viruses, fungi and protozoa at either the cell surface or in lysosomes or endosomes. Pathogens that invade the cytosol are recognized by various cytoplasmic PRRs. The NLRs recognize a wide range of ligands within the cytoplasm. The RLRs recognize the RNA from RNA viruses in the cytosol. Among these, TLR signaling and associated downstream regulations of immune cell functions play a crucial role in the innate system as a first line of defense against pathogens. However, signaling is sometimes conflicting and a sustained inflammatory response can result in tissue damage³⁰. In addition to the numerous exogenous pathogen-derived ligands that activate the different TLRs, endogenous TLR ligands have been identified in recent years. This includes hyaluronic acid, high-mobility group box 1 (HMGB1), and heat-shock proteins (HSPs), termed as damaged-associated molecular patterns (DAMPs). During tissue injury or proteolysis, extracellular

matrix components undergo cleavage, exposing moieties that can act as ligands for TLRs and therefore initiating TLR-induced signal transduction³¹. Multiple positive feedback loops between DAMPs and PAMPs, and their overlapping receptors temporally and spatially drive these processes and may represent the molecular basis for the observation that infections, as well as nonspecific stress factors, can trigger flares in systemic inflammatory response³².

Inflammasome: A Multiprotein Complex That Activates Caspase-1

The NLR family contains 23 members in humans and approximately 34 in mice. Among them, functions of several NLR members are well characterized. The NLR family has a unique structure composed of three domains: 1) the Cterminal domain consists of several leucine-rich repeat (LRR) that is involved in the recognition of microbial PAMPs or DAMPs; 2) the N-terminal domain consists of a death effector domain (DED), a pyrin domain (PYD), a caspase-recruitment domain (CARD), and Baculovirus IAP repeat (BIR) domain; and finally 3) an intermediate domain consisting of nucleotide-binding and oligomerization (NACHT) domain, which are required for ligand-induced, ATPdependent oligomerization of PRRs and formation of active receptor complexes for activation of downstream signaling. The NLRs can be grouped based on their effector domains and are named NLR with a suffix of P or C referring to the N terminal moiety, PYD or CARD, respectively, followed by a number. NODs and NLRCs contain CARD effector domains, NLRPs contain PYD domains, and NAIPs contain BIR domains^{33,34}. The mechanism by which the NLRs are able to recognize bacterial components is not well understood. The NOD proteins NOD1 and NOD2, the discovered NLRs, contribute to the detection of common fragments of peptidoglycan (ie, diamino-pimelate for NOD1, and muramyl dipeptide for NOD2) in the cytosol. When NODs recognize PAMPs, they rapidly oligomerize, which leads to the recruitment of the receptor-interacting protein 2 (RIP2) kinase, and activate NF- κ B and MAP kinases

to induce the transcription of inflammatory cytokines^{35,36}. A number of the NLR molecules have been shown to form a complex with caspase-1 and the adaptor molecule apoptosis associated speck-like protein containing a CARD (ASC) termed an "inflammasome", with the specific name stemming from the individual NLR molecules. The central effector molecule of the inflammasome is the cysteine protease caspase-1 that, upon activation cleaves cytosolic pro-IL-1β, pro-IL-18, and pro-IL-33 to their active forms IL-1β, IL-18, and IL-33, respectively, enabling them to be secreted into the extracellular/systemic compartments^{37,38}.

The important fact is that the NLRs and TLRs may synergize. TLRs activation by different ligands. induce pro-IL-1ß and pro-IL-18 production; and to become biologically active, these cytokines need to be cleaved by caspase-1, its post-translational activation is tightly regulated by inflammasome³⁹. The NLRP3 inflammasome is the most widely studied inflammasome and, to date, numerous PAMPs and host DAMPs have been reported, which activate the NLRP3 inflammasome. Although NLRP3 inflammasome biology has rapidly expanded, it is unclear whether NLRP3 senses ligands directly or indirectly. The NLRP3 inflammasome is composed of NLRP3, ASC, and pro-caspase-1 (Fig. 1). Stimulation of cells with appropriate ligands induces oligomerization of NLRP3, which promotes the clustering of ASC with NLRP3 via a PYD-PYD interaction. The CARD of ASC and the CARD of pro-caspase-1 then interact to induce catalysis of procaspase-1 to yield caspase-1, consisting of a p10/p20 tetramer, which catalyzes the proteolysis of pro-IL-1β and pro-IL-18 to IL-1β and IL-18, respectively. Several models of NLRP3 activation have been proposed including ATP-induced efflux of potassium ions via P2X7 ion channels and pannexin-1, and ROS induction, which leads to disruption of lysosomal membranes and the release of lysosomal proteins that activates NLRP3 inflammasome40.41 (Fig. 1). In addition, a recent study has shown that IL-33 production is also mediated by TLR (TLR3 and TLR5)-NF-KB innate signaling pathways in corneal epithelial cells⁴². This suggests the critical role of synergetic action between TLRs and inflammasome

in IL-33 production.

The role of inflammasome in the pathogenesis of sepsis is revealing. Caspase-1-deficient mice are protected from sepsis, while IL-1β-and IL-1β/IL-18deficient mice are not43. However, inhibition of caspase-1 in IL-1 β /IL-18-deficient mice confers protection against sepsis-associated mortality than caspase-1-intact IL-1B/IL-18-deficient mice⁴³. This finding indicates the existence of another caspase-1dependent mediator of sepsis. Recently, it was unveiled that reduced serum HMGB1 levels in caspase-1-deficient mice correlated with their resistance to LPS, and HMGB1 release requires the inflammasome components of ASC, caspase-1, and NLRP3. They concluded that HMGB1 secretion, which is a critical cytokine mediator of lethality in sepsis, occurs downstream of inflammasome assembly and caspase-1 activation⁴⁴. In addition, NLRP3-deficiency was associated with partial protection against the lethal effect of endotoxin, and ASC-deficient mice were also resistant to LPSinduced sepsis^{45,46}. However, caspase-12, which negatively regulates pro-inflammatory action of caspase-1, -deficient mice exhibit increased survival after sepsis⁴⁷. In a clinical study, the mRNA levels of monocyte inflammasome components, such as ASC, NLRP1, and caspase-1, were found to be decreased in early stage septic patients. This suggests that this monocyte deactivation, characterized by lower expression of inflammasome components, may be maladaptive in the later phases of sepsis⁴⁸. Great strides have been made over the past few years into understanding the crucial role of NLRs and inflammasome for the immune response to intracellular pathogens and cellular perturbations. However, further investigations are required to clarify the wider significance and the contribution to the pathogenesis of sepsis.

The Cholinergic Anti-inflammatory Pathway in Sepsis

With the accumulation of the knowledge regarding pro-inflammatory cytokines produced by the immune system causing numerous diseases, investigators focused on the physiological control A. Matsuda, et al

Fig. 1 NLRP3 inflammasome activation and the synergetic action with TLR signaling. To date, numerous stimuli such as pathogen-associated molecular patterns (PAMPs), ATP, and damaged-associated molecular patterns (DAMPs) have been shown to activate the NLRP3 inflammasome. However, it is still unclear whether NLRP3 senses these ligands directly or indirectly. NLRP3 activating PAMPs and DAMPs induce K⁺ efflux and reactive oxygen species (ROS) generation that play a role in the NLRP3 inflammasome activation. The NLRP3 inflammasome comprises NLRP3, apoptosis associated speck-like protein containing a CARD (ASC), and pro-caspase-1. It is well accepted that maturation and secretion of interleukin (IL)-1 β and IL-18 requires two distinct signals. The initial signal is transcriptional and translational up-regulation of inactive form of cytokines (pro-IL-1β and pro-IL-18) in response to Toll-like receptor (TLR) ligands such as PAMPs through activation of NF- κ B. The second signal, which originates from appropriate ligands, results in the assembly of the NLRP3 inflammasome, that induce catalysis of pro-caspase-1 to yield to caspase-1, and caspase-1 in turn, catalyzes the proteolysis of pro-IL-1 β and pro-IL-18 to active form of IL-1 β and IL-18, respectively, which is then released to extracellular space. LRR, leucine-rich repeat; NACHT, nucleotide-binding and oligomerization domain; PYD a pyrin domain; CARD, a caspase-recruitment domain.

mechanisms that maintain homeostasis by counterregulation of cytokine release. So far, various endogenous anti-inflammatory mediators and mechanisms are discovered and proved to have a capacity to prevent pro-inflammatory cytokinemediated diseases⁴⁹⁻⁵¹. Recently, Tracey, et al. described an alternative cytokine control mechanism based on the structure of the nervous system. The central nervous system (CNS), through the vagus nerve, can reflexively modulate innate immune responses and control systemic inflammation; a " the mechanism termed cholinergic antiinflammatory pathway"50. Stimulation of the efferent

the organs of the reticuloendothelial system, including the liver and spleen, and in the systemic levels after endotoxemia52-55. These data indicates that cholinergic signaling through central muscarinic acetylcholine receptors cytokine production by activation of the cholinergic anti-inflammatory pathway

(Fig. 2).

modulates

electrical

peripheral

the

In

vagus nerve either by intracerebroventicular

administration of pharmacological agents such as

CNI-1493, muscarine, McN-A-343 (selective M1

muscarinic receptor agonist), methoctramine (M2

stimulation, restrains the production of TNF- α from

receptor antagonist) or by direct

Fig. 2 The cholinergic anti-inflammatory pathway and the modulation.

If infection occurs, innate immune cells induce an inflammatory response characterized by the production of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-a, IL-6, and highmobility group box 1 (HMGB1). These inflammatory mediators stimulate the afferent vagus nerve and the signals are relayed to the central nervous system (CNS). The CNS coordinates major physiological responses to maintain homeostasis for parameters as varied as heart rate, blood pressure, body temperature, and organ perfusion via the efferent vagus nerve. Furthermore, efferent vagus nerve signals can control pro-inflammatory production via pathways dependent on the α 7 subunit of the nicotinic acetylcholine receptor (α 7nAChR) on macrophages; a mechanism termed "the cholinergic anti-inflammatory pathway". Intracerebroventricular administration of cholinergic agonist, such as McN-A-343 (M1 muscarinic receptor agonist), can activate efferent vagus nerve. The activation of efferent vagus nerve by pharmacological and electrical simulation, and the systemic administration of cholinergic agonists, such as GTS-21 (selective a7nAChR agonist) inhibit the production of proinflammatory cytokines in endotoxemia and sepsis. The plausible molecular mechanisms related the anti-inflammatory effect of a7nAChR activation with ligands on macrophages suppress the nuclear translocation of NF-KB as well as activation of STAT3 via phosphorylation by JAK2, which is recruited to a7nAChR. Ach, acetylcholine.

cholinergic anti-inflammatory pathway, enhanced efferent activity of parasympathetic nerve endings results in the release of acetylcholine, which suppresses pro-inflammatory cytokine production by a specific action on the α 7 subunit of the nicotinic acetylcholine receptor (α 7nAChR) on macrophages⁵⁶. Mice exposed to endotoxin showed excessive proinflammatory cytokine response if they are deficient in either α 7nAChR or vagus nerve activity, which is induced by vagotomy⁵³⁵⁶. Furthermore, vagus nerve stimulation in α 7nAChR deficient mice fails to restrain cytokine release after endotoxemia⁵⁶. Additionally, vagus nerve stimulation or α 7nAChR agonists inhibit not only TNF- α but also IL-1, IL-6, IL-8, and HMGB1 after sepsis⁵⁷. The activation of α 7nAChR with ligands on macrophages suppresses the nuclear translocation of NF- κ B as well as activation of STAT3 via phosphorylation by JAK2, which is recruited to α 7nAChR and, as a consequence, result in the down-regulation of proinflammatory cytokine release^{57,58} (Fig. 2). Recently, a critical role for the spleen in inducing lethal

excessive cytokine response after endotoxemia and sepsis has been identified54. This study also suggested that the principal components for cytokine suppression via the cholinergic antiinflammatory pathway converge in the spleen, by the fact that splenectomy significantly suppresses TNF- α levels in the liver and blood, and vagus nerve stimulation fails to suppress these levels further⁵⁴. Unlike glucocorticoids or other humoral antiinflammatory factors that function via systemic diffusion-dependent mechanisms, the cholinergic anti-inflammatory pathway is a direct physical link between the CNS and the immune system that precisely regulates immune responses in "real time"50.59. Considering that a deficient response to infection can lead to a failure to clear infection, whereas an excessive response can be more injurious than the initial insult, the prompt and precise regulation of the inflammatory response by the cholinergic anti-inflammatory pathway could be promising therapeutic target а for sepsis intervention. Several preclinical studies have shown the efficacy of modulating the cholinergic antiinflammatory pathway not only for the cytokine response but also for the following deteriorating scenarios of sepsis. Serum TNF-a was increased by bilateral cervical vagotomy, whereas electrical stimulation of the vagus nerve attenuated it and prevented hypotension in rat polymicrobial peritonitis⁶⁰. The hallmark of sepsis is organ dysfunction associated with abnormalities in the coagulatory system, which can result in disseminated intravascular coagulation. Vagus nerve stimulation regulates coagulation activation and fibrinolysis and thus can alter haemostatic responses⁶¹. The selective α7nAChR agonist GTS-21 improved survival and decreased neutrophil recruitment into peritoneal cavity in endotoxemia⁶², attenuated serum HMGB1 levels, and improved survival in sepsis63.

As mentioned above, the vagus nerve serves the critical interface between involuntary nervous system and immune cells for the counter-regulation of cytokine release. Interestingly, recent studies have unveiled that the anti-inflammatory property of a novel peptide ghrelin is also mediated through the

vagus nerve activation⁶⁴⁻⁷⁰. Ghrelin, an orexigenic hormone, was first identified in the stomach as an endogenous ligand for the growth hormone secretagogue receptor type 1a (GHSR-1a, i.e., ghrelin receptor)⁷¹. Although various functions of ghrelin, including food intake, growth hormone production, adipogenesis, and neurogenesis, have been established, recently, ghrelin has emerged as a potent immune-regulatory and anti-inflammatory agent^{72,73}. We have clearly shown that intravenous ghrelin administration significantly reduced systemic TNF-a, IL-6, and HMGB1 levels after cecal ligation and puncture (CLP)-induced sepsis, and vagotomy abrogated the ghrelin's down-regulatory effect on pro-inflammatory cytokine production^{68,70}. Ghrelin can cross the blood-brain barrier, and ghrelin receptors are expressed at a high density in the brain74-76. Intravenous administration of ghrelin restores the sepsis-induced decrease of brain ghrelin levels and, moreover, intracerebroventricular ghrelin injection inhibits HMGB1 release70. Taken together, ghrelin can suppress the pro-inflammatory cytokine release in sepsis by the vagus nerve activation via central ghrelin receptors. From these evidences, targeting the vagus nerve activation appears to be a potential therapeutic candidate for sepsis.

Stem Cells in Sepsis

Stem cells are unspecialized or undifferentiated precursor cells with the capacity for self-renewal and the power to differentiate into multiple cell types⁷⁷. Since the discovery⁷⁸, vigorous efforts have been made by investigators to be applied for the clinical situations based on its multiple potencies. So far, various stem cells have been identified and tried to utilize as cell-based therapy for a variety of disease conditions experimentally⁷⁹⁻⁸³. Until recently, the beneficial effects of stem cells were attributed to their ability to incorporate into tissue (engraftment), differentiate into the appropriate cell type, and repair injured areas. Although engraftment may still occur with some stem cells, recent investigations propose that other mechanisms, especially paracrine effects, may be involved⁸⁴⁻⁸⁶. Stem cells are broadly classified into adult tissue-derived vs. embryonic

stem cells. Although adult stem cells do not possess the full plasticity of embryonic stem cells (ESCs), which is derived from the inner cell mass of a developing blastocyst, they offer practical including ease advantages of isolation and propagation. More significantly, they have a limited risk of tumor formation and are not associated with the ethical controversy that surrounds ESC research. Among these, mesenchymal stem cells (MSCs) (also known as bone marrow-derived stromal cells) are the most widely studied adult stem cells. The current enthusiasm surrounding the potential use of MSCs for therapeutic purposes is derived from their low immunogenicity, their immunomodulatory properties, and their ability to secrete endothelial and epithelial growth factors and, more recently, antimicrobial peptides⁸⁷⁻⁹¹. The unique surface markers of MSCs have not been identified, however, minimal criteria which is in consensus to define human MSCs include 1) selection for a plasticadherent cell population in standard culture conditions; 2) expression of CD105, CD73, and CD90 and lack of expression of CD45, CD34, CD14, or CD11b; and 3) ability to differentiate into mesenchymal lineages including osteoblasts. adipocytes, and chondrocytes in vitro⁹².

Stem cells, recently, have demonstrated prominent potentials to both directly regenerate tissue by virtue of their pluripotency and attenuate injury and inflammation via paracrine mechanisms in sepsis and sepsis-induced acute lung injury. Stem cells have anti-inflammatory properties, which counterregulate pro-inflammatory cytokines, such as TNF-α, IL-1, and IL-6, by producing anti-inflammatory cytokines TGF-B, IL-10, and IL-1393. In a mice model of sepsis, bone marrow-derived MSCs administration at the time of surgery for CLP, between 24 h before to 1 h after surgery, improved survival than untreated animals, mitigated liver and renal dysfunction, decreased TNF- α and IL-6 levels by increasing IL-10, and attenuated vascular permeability compared to untreated animals. Furthermore, the beneficial effects of MSCs were eliminated by macrophages depletion, or blocking of IL-10 or its receptor, suggesting that MSCs may interact with immune cells, especially macrophages,

to reprogram the host responses⁹⁴. In a model of ALI induced by intratracheal E. coli endotoxin in mice, it was shown that syngeneic MSCs improved survival and lung injury which was associated with a MIP-2 in and TNF-α levels decrease in bronchoalveolar lavage (BAL) fluid and elevated levels of IL-10 in both the plasma and BAL fluid87. Another showed that group intravenous administration of syngeneic MSCs following intraperitoneal LPS injection prevented endotoxininduced pulmonary injury, and edema as well as the influx of neutrophil into the injured alveoli. In this study, MSCs regulated the increase in systemic proinflammatory cytokines but did not alter the levels of anti-inflammatory cytokine, IL-1095. Moreover, a recent evidence demonstrated that human allogeneic MSCs ameliorated lung edema, improved lung endothelial barrier integrity, normalized alveolar epithelial fluid transport, and decreased inflammatory cell infiltration in an ex vivo perfused human lung injured by E. coli endotoxin. The authors suggested that this beneficial effect of human MSCs was derived from the secreted keratinocyte growth factor from MSCs⁹⁶. In these studies, the therapeutic effect could not be accounted for by the level of lung MSCs engraftment, suggesting the importance of paracrine soluble factors or direct interaction with host cells. Besides, MSCs treatment decreases bacterial load in sepsis^{89,94,97}. The plausible mechanisms of improved bacterial clearance by MSCs are enhanced phagocytic activity of splenic monocytes and macrophages, and/or a direct inhibition of bacterial growth via the secretion of an anti-microbial peptide LL-3788.89. As mentioned above, stem cells have shown significant promise as potential novel therapies for sepsis. However, there are still many complexities, such as an accurate definition of stem cells, a risk of formation of neoplasm, an optimal method of delivery. Initial findings suggest that the unique abilities of stem cells may offer benefit in the setting of sepsis and ongoing investigation to precisely characterize their role in the treatment of this condition is warranted.

MFG-E8: Novel Immunomodulatory Opsonin in Sepsis

Apoptosis, historically, has been seen as an ordinary process of cell suicide that, unlike necrosis, does not induce inflammation⁹⁸. Recently, it has been demonstrated that not only necrotic cells but also apoptotic cells that were not engulfed appropriately by phagocytes, a termed "secondary necrosis," release potentially cytotoxic and antigenic intracellular contents, such as HSPs and HMGB1, that can promote an inflammatory response^{88,89,99-101}. Furthermore, it is reported that pretreatment of animals with apoptotic splenocytes worsens the outcome in sepsis, suggesting that the detrimental effect of accumulated apoptotic cells in the body¹⁰². It has been shown that widespread and profound apoptosis of immune cells and component cells of respective organs are induced under septic conditions. This excessive apoptosis, which is an overload for professional phagocytes, elicits the impairment of immune function and increase in proinflammatory cytokine responses, which lead to organ injury¹⁰³⁻¹⁰⁵.

Milk fat globule-EGF factor VIII (MFG-E8), a 66 kDa glycoprotein, initially was identified as one of the major protein components associated with milk fat globule membrane in the mouse¹⁰⁶. MFG-E8 is known to be expressed in various cells, mainly in macrophages and dendritic cells, and expressed ubiquitously in almost all organs^{107,108}. MFG-E8 contains a signal sequence for secretion, two Nterminal EGF domains and two C-terminal discoidin domains with homology to C1 and C2 domains found in blood-clotting factors V and VIII106,109. The second EGF domain contains a highly conserved arginineglycine-aspartate (RGD) motif, by which it recognizes $\alpha_{\rm v}\beta_3/\alpha_{\rm v}\beta_5$ -integrin of phagocytes, while the C-terminal discoidin domains enable it to bind to the apoptotic cells via phosphatidylserine (PS), which is redistributed to the external surface of the plasma membrane after the induction of apoptosis^{110,111}. Through this process, MFG-E8 plays a role as a "bridging molecule" and facilitates the engulfment of apoptotic cells by phagocytes¹⁰⁸ (Fig. 3). The

engulfment of apoptotic cells by phagocytes is known to be non-inflammatory and nonimmunogenic processes¹¹². In fact, macrophages that engulf apoptotic cells have been shown to produce anti-inflammatory cytokines, including TGF-B, IL-10, which could potentially dampen inflammation^{113,114}. MFG-E8 Collectively, functions as an immunomodulatory molecule via the enhancement of phagocytosis of apoptotic cells. We have shown that MFG-E8-mediated apoptotic cell phagocytosis in primary macrophages results in an inhibition of MAPK and NF-kB signaling pathways, which lead to the inhibition of TNF-α release¹¹⁵. MFG-E8-deficient mice showed various characteristics of inflammation and autoimmunity due to the accumulated apoptotic cells without appropriate engulfment bv phagocytes¹⁰⁸.

MFG-E8 is reported to be differentially expressed condition under from its normal various pathophysiological stresses. Under sepsis or endotoxemia conditions, MFG-E8 expression was significantly suppressed in various organs, including spleen, liver, and intestine¹¹⁶⁻¹¹⁹. In addition, we have unveiled that not only infectious state, but also ischemia/reperfusion stress elicits significant downregulation of MFG-E8120,121. Mechanistically, sepsisinduced suppression of MFG-E8 expression has been proved to be LPS-TLR4 pathway dependent¹²². One of the hallmarks of sepsis is accumulated systemic apoptotic cells, which is partially derived from a decreased phagocytic activity of professional phagocytes. The suppressed MFG-E8 expression is a plausible contributor for the decreased phagocytotic activity in sepsis^{117,119,123}. Taken together, these evidences indicate that MFG-E8 serve a critical role in controlling excess inflammatory responses through the inhibition of apoptotic cell accumulation, which otherwise results in subsequent secondary necrosis (Fig. 3). Hence, focusing on MFG-E8 could be a promising therapeutic approach for sepsis. To prove the therapeutic potential, exogenous administration of MFG-E8 conferred beneficial effects in CLP-sepsis model. We have shown that exogenous administration of immature dendritic cellderived exosome (IDCE), that contains MFG-E8 robustly, attenuated the release of pro-inflammatory

Fig. 3 The immunomodulatory effect of MFG-E8 through the enhancement of phagocytosis of apoptotic cells.

The accumulation of apoptotic cells is one of the major hallmarks of sepsis. Sepsis decreases apoptotic clearance by phagocytes through the down-regulation of milk fat globule-EGF factor VIII (MFG-E8). MFG-E8, a membrane-associated glycoprotein, plays a role as bridging molecule between phosphatidylserine (PS) on apoptotic cells and $\alpha_{\nu}\beta_{3}/\alpha_{\nu}\beta_{5}$ -integrin of phagocytes, and facilitates the phagocytosis of apoptotic cells. If apoptotic cells were not engulfed appropriately by phagocytes, apoptotic cells have the potential to release toxic and pro-inflammatory contents due to secondary necrosis, and potentiate organ injury. MFG-E8 is known to be differentially expressed under various pathophysiological conditions. In sepsis or endotoxemia, MFG-E8 expression was significantly suppressed and which leads to the impairment of phagocytcic capacity against apoptotic cells. Exogenous administration of MFG-E8 enhances phagocytotic activity and therefore attenuates detrimental inflammation thereby decrease tissue injury and mortality. *HSPs*, heat shock proteins.

cytokines, including TNF-a, IL-6, and HMGB-1^{119,123}. IDCE recombinant MFG-E8 and treatment facilitated the clearance of apoptotic cells and consequently, decreased apoptotic cells. Furthermore, these treatments also dramatically improved the survival rate using CLPE model, which is provided by CLP and excision of necrotic cecum after 20 hrs CLP123. Besides, we have also demonstrated MFG-E8's direct anti-inflammatory property that MFG-E8 suppresses pro-inflammatory cytokine production from macrophages after LPS stimulation via the activation of negative regulators, such as SOCS3124.

Conclusion

Considerable progress has been made in the last decade regarding management strategies in sepsis. Despite advances in supportive care, sepsis still claims a high death toll among affected patients due to cardiovascular shock and multiple organ failure. This is partly due to the fact that sepsis is a poorly defined clinical syndrome that encompasses heterogeneous patient populations with potentially diverse disease etiologies. The role of exaggerated inflammatory responses against infection in the

pathophysiology of sepsis, although quite complex and still incompletely understood, is clearly critical. Therefore, prompt and efficient anti-inflammatory strategies can provide therapeutic benefits for septic clinical settings. In this concise review, we described novel potential concepts targeting regulation of inflammatory responses in sepsis, however these are still in infancy state with many key questions unresolved and others as yet unasked. It is anticipated that continuous dedication in answering questions will greatly these improve our understanding, and may shed light on novel therapeutic targets for the treatment of sepsis.

Acknowledgements: This work is supported by the National Institutes of Health (NIH) grants, R01 GM057468 and R01 GM053008 (P.W.). One of the authors (P Wang) is an inventor of the pending PCT application #WO/2006/122327: "Milk fat globule epidermal growth factor-factor VIII and sepsis" and PCT application #WO/2009/064448: "Prevention and treatment of inflammation and organ injury after ischemia/reperfusion using MFG-E8". These patent applications cover the fundamental concept of using MFG-E8 for the treatment of sepsis and ischemia/reperfusion injury.

References

- Kung HC, Hoyert DL, Xu J, Murphy SL: Deaths: final data for 2005. Natl Vital Stat Rep 2008; 56: 1– 120.
- Melamed A, Sorvillo FJ: The burden of sepsisassociated mortality in the United States from 1999 to 2005: an analysis of multiple-cause-of-death data. Crit Care 2009; 13: R28.
- Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR: Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 2001; 29: 1303–1310.
- Dombrovskiy VY, Martin AA, Sunderram J, Paz HL: Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Crit Care Med 2007; 35: 1244–1250.
- Martin GS, Mannino DM, Eaton S, Moss M: The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 2003; 348: 1546– 1554.
- Russell JA: Management of sepsis. N Engl J Med 2006; 355: 1699–1713.
- Oberholzer C, Oberholzer A, Clare-Salzler M, Moldawer LL: Apoptosis in sepsis: a new target for therapeutic exploration. FASEB J 2001; 15: 879–892.

- Riedemann NC, Guo RF, Ward PA: Novel strategies for the treatment of sepsis. Nat Med 2003; 9: 517– 524.
- van den Berghe G, Wouters P, Weekers F, et al.: Intensive insulin therapy in the critically ill patients. N Engl J Med 2001; 345: 1359–1367.
- Bone RC, Balk RA, Cerra FB, et al.: Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992; 101: 1644–1655.
- 11. Abraham E, Matthay MA, Dinarello CA, et al.: Consensus conference definitions for sepsis, septic shock, acute lung injury, and acute respiratory distress syndrome: time for a reevaluation. Crit Care Med 2000; 28: 232–235.
- Matot I, Sprung CL: Definition of sepsis. Intensive Care Med 2001; 27 Suppl 1: S3–9.
- Dellinger RP, Levy MM, Carlet JM, et al.: Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 2008; 36: 296–327.
- Houston G, Cuthbertson BH: Activated protein C for the treatment of severe sepsis. Clin Microbiol Infect 2009; 15: 319–324.
- Cai B, Deitch EA, Ulloa L: Novel insights for systemic inflammation in sepsis and hemorrhage. Mediators Inflamm 2010; 2010: 642462.
- Hotchkiss RS, Karl IE: The pathophysiology and treatment of sepsis. N Engl J Med 2003; 348: 138– 150.
- Riedemann NC, Ward PA: Anti-inflammatory strategies for the treatment of sepsis. Expert Opin Biol Ther 2003; 3: 339–350.
- Mira JP, Cariou A, Grall F, et al.: Association of TNF2, a TNF-alpha promoter polymorphism, with septic shock susceptibility and mortality: a multicenter study. JAMA 1999; 282: 561–568.
- van der Poll T, Lowry SF: Tumor necrosis factor in sepsis: mediator of multiple organ failure or essential part of host defense? Shock 1995; 3: 1–12.
- Moshage H: Cytokines and the hepatic acute phase response. J Pathol 1997; 181: 257–266.
- Beasley D, Schwartz JH, Brenner BM: Interleukin 1 induces prolonged L-arginine-dependent cyclic guanosine monophosphate and nitrite production in rat vascular smooth muscle cells. J Clin Invest 1991; 87: 602–608.
- Chapman PB, Lester TJ, Casper ES, et al.: Clinical pharmacology of recombinant human tumor necrosis factor in patients with advanced cancer. J Clin Oncol 1987; 5: 1942–1951.
- Dinarello CA: Proinflammatory and antiinflammatory cytokines as mediators in the pathogenesis of septic shock. Chest 1997; 112: 321S– 329S.
- 24. Okusawa S, Gelfand JA, Ikejima T, Connolly RJ, Dinarello CA: Interleukin 1 induces a shock-like state in rabbits. Synergism with tumor necrosis factor and the effect of cyclooxygenase inhibition. J Clin Invest 1988; 81: 1162–1172.
- 25. van der Poll T, Buller HR, ten Cate H, et al.: Activation of coagulation after administration of tumor necrosis factor to normal subjects. N Engl J

Med 1990; 322: 1622-1627.

- Kast RE: Tumor necrosis factor has positive and negative self regulatory feed back cycles centered around cAMP. Int J Immunopharmacol 2000; 22: 1001–1006.
- Kawai T, Akira S: TLR signaling. Semin Immunol 2007; 19: 24–32.
- Creagh EM, O'Neill LA: TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol 2006; 27: 352–357.
- 29. Uematsu S, Akira S: Toll-like receptors and innate immunity. J Mol Med 2006; 84: 712–725.
- van der Poll T, Opal SM: Host-pathogen interactions in sepsis. Lancet Infect Dis 2008; 8: 32– 43.
- Wagner H: Endogenous TLR ligands and autoimmunity. Adv Immunol 2006; 91: 159–173.
- Cinel I, Opal SM: Molecular biology of inflammation and sepsis: a primer. Crit Care Med 2009; 37: 291– 304.
- Kawai T, Akira S: The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 2009; 21: 317–337.
- Kumar H, Kawai T, Akira S: Pathogen recognition by the innate immune system. Int Rev Immunol 2011; 30: 16–34.
- Barnich N, Aguirre JE, Reinecker HC, Xavier R, Podolsky DK: Membrane recruitment of NOD2 in intestinal epithelial cells is essential for nuclear factor-{kappa}B activation in muramyl dipeptide recognition. J Cell Biol 2005; 170: 21–26.
- Kufer TA, Kremmer E, Adam AC, Philpott DJ, Sansonetti PJ: The pattern-recognition molecule Nod1 is localized at the plasma membrane at sites of bacterial interaction. Cell Microbiol 2008; 10: 477– 486.
- Mariathasan S, Monack DM: Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol 2007; 7: 31–40.
- Pedra JH, Cassel SL, Sutterwala FS: Sensing pathogens and danger signals by the inflammasome. Curr Opin Immunol 2009; 21: 10–16.
- 39. Ogura Y, Sutterwala FS, Flavell RA: The inflammasome: first line of the immune response to cell stress. Cell 2006; 126: 659–662.
- Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G: The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 2009; 10: 241–247.
- Franchi L, Warner N, Viani K, Nunez G: Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev 2009; 227: 106–128.
- 42. Zhang L, Lu R, Zhao G, Pflugfelder SC, Li DQ: TLRmediated induction of pro-allergic cytokine IL-33 in ocular mucosal epithelium. Int J Biochem Cell Biol (in press).
- 43. Sarkar A, Hall MW, Exline M, et al.: Caspase-1 regulates Escherichia coli sepsis and splenic B cell apoptosis independently of interleukin-1beta and interleukin-18. Am J Respir Crit Care Med 2006; 174: 1003–1010.
- Lamkanfi M, Sarkar A, Vande Walle L, et al.: Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia. J Immunol 2010; 185: 4385–

4392.

- Mariathasan S, Newton K, Monack DM, et al.: Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 2004; 430: 213–218.
- 46. Sutterwala FS, Ogura Y, Szczepanik M, et al.: Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 2006; 24: 317–327.
- Saleh M, Mathison JC, Wolinski MK, et al.: Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice. Nature 2006; 440: 1064– 1068.
- 48. Fahy RJ, Exline MC, Gavrilin MA, et al.: Inflammasome mRNA expression in human monocytes during early septic shock. Am J Respir Crit Care Med 2008; 177: 983–988.
- Nathan C: Points of control in inflammation. Nature 2002; 420: 846–852.
- 50. Tracey KJ: The inflammatory reflex. Nature 2002; 420: 853–859.
- Tracey KJ: Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest 2007; 117: 289–296.
- 52. Bernik TR, Friedman SG, Ochani M, et al.: Pharmacological stimulation of the cholinergic antiinflammatory pathway. J Exp Med 2002; 195: 781–788.
- Borovikova LV, Ivanova S, Zhang M, et al.: Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000; 405: 458–462.
- 54. Huston JM, Ochani M, Rosas-Ballina M, et al.: Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med 2006; 203: 1623–1628.
- 55. Pavlov VA, Ochani M, Gallowitsch-Puerta M, et al.: Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. Proc Natl Acad Sci U S A 2006; 103: 5219–5223.
- Wang H, Yu M, Ochani M, et al.: Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 2003; 421: 384– 388.
- Wang H, Liao H, Ochani M, et al.: Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med 2004; 10: 1216–1221.
- 58. de Jonge WJ, van der Zanden EP, The FO, et al.: Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol 2005; 6: 844–851.
- Smoak KA, Cidlowski JA: Mechanisms of glucocorticoid receptor signaling during inflammation. Mech Ageing Dev 2004; 125: 697–706.
- Song XM, Li JG, Wang YL, et al.: The protective effect of the cholinergic anti-inflammatory pathway against septic shock in rats. Shock 2008; 30: 468– 472.
- van Westerloo DJ, Giebelen IA, Meijers JC, et al.: Vagus nerve stimulation inhibits activation of coagulation and fibrinolysis during endotoxemia in

rats. J Thromb Haemost 2006; 4: 1997-2002.

- 62. Giebelen IA, van Westerloo DJ, LaRosa GJ, de Vos AF, van der Poll T: Stimulation of alpha 7 cholinergic receptors inhibits lipopolysaccharideinduced neutrophil recruitment by a tumor necrosis factor alpha-independent mechanism. Shock 2007; 27: 443–447.
- Pavlov VA, Ochani M, Yang LH, et al.: Selective alpha7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis. Crit Care Med 2007; 35: 1139–1144.
- 64. Cheyuo C, Wu R, Zhou M, Jacob A, Coppa G, Wang P: Ghrelin suppresses inflammation and neuronal nitric oxide synthase in focal cerebral ischemia via the vagus nerve. Shock 2011; 35: 258–265.
- Jacob A, Shah KG, Wu R, Wang P: Ghrelin as a novel therapy for radiation combined injury. Mol Med 2010; 16: 137–143.
- 66. Shah KG, Wu R, Jacob A, et al.: Human ghrelin ameliorates organ injury and improves survival after radiation injury combined with severe sepsis. Mol Med 2009; 15: 407–414.
- 67. Wu JT, Kral JG: Ghrelin: integrative neuroendocrine peptide in health and disease. Ann Surg 2004; 239: 464–474.
- 68. Wu R, Dong W, Cui X, et al.: Ghrelin downregulates proinflammatory cytokines in sepsis through activation of the vagus nerve. Ann Surg 2007; 245: 480–486.
- 69. Wu R, Dong W, Ji Y, et al.: Orexigenic hormone ghrelin attenuates local and remote organ injury after intestinal ischemia-reperfusion. PLoS One 2008; 3: e2026.
- Wu R, Dong W, Qiang X, et al.: Orexigenic hormone ghrelin ameliorates gut barrier dysfunction in sepsis in rats. Crit Care Med 2009; 37: 2421–2426.
- Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K: Ghrelin is a growth-hormonereleasing acylated peptide from stomach. Nature 1999; 402: 656–660.
- Dixit VD, Schaffer EM, Pyle RS, et al.: Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. J Clin Invest 2004; 114: 57– 66.
- Taub DD: Novel connections between the neuroendocrine and immune systems: the ghrelin immunoregulatory network. Vitam Horm 2008; 77: 325–346.
- 74. Banks WA, Tschop M, Robinson SM, Heiman ML: Extent and direction of ghrelin transport across the blood-brain barrier is determined by its unique primary structure. J Pharmacol Exp Ther 2002; 302: 822–827.
- 75. Cowley MA, Smith RG, Diano S, et al.: The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 2003; 37: 649–661.
- Wu R, Zhou M, Cui X, Simms HH, Wang P: Ghrelin clearance is reduced at the late stage of polymicrobial sepsis. Int J Mol Med 2003; 12: 777– 781.
- McCulloch EA, Till JE: Perspectives on the properties of stem cells. Nat Med 2005; 11: 1026–

1028.

- Ferrari G, Cusella-De Angelis G, Coletta M, et al.: Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998; 279: 1528–1530.
- Alison MR, Poulsom R, Jeffery R, et al.: Hepatocytes from non-hepatic adult stem cells. Nature 2000; 406: 257.
- Hayashi Y, Tsuji S, Tsujii M, et al.: The transdifferentiation of bone-marrow-derived cells in colonic mucosal regeneration after dextran-sulfatesodium-induced colitis in mice. Pharmacology 2007; 80: 193–199.
- Kopen GC, Prockop DJ, Phinney DG: Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A 1999; 96: 10711–10716.
- Korbling M, Katz RL, Khanna A, et al.: Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N Engl J Med 2002; 346: 738–746.
- Poulsom R, Forbes SJ, Hodivala-Dilke K, et al.: Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol 2001; 195: 229–235.
- 84. Gnecchi M, He H, Noiseux N, et al.: Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 2006; 20: 661–669.
- 85. Togel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C: Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol 2005; 289: F31–42.
- Wang M, Tsai BM, Crisostomo PR, Meldrum DR: Pretreatment with adult progenitor cells improves recovery and decreases native myocardial proinflammatory signaling after ischemia. Shock 2006; 25: 454–459.
- 87. Gupta N, Su X, Popov B, Lee JW, Serikov V, Matthay MA: Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 2007; 179: 1855–1863.
- Krasnodembskaya A, Song Y, Fang X, et al.: Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 2010; 28: 2229–2238.
- Mei SH, Haitsma JJ, Dos Santos CC, et al.: Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med 2010; 182: 1047–1057.
- Nauta AJ, Fibbe WE: Immunomodulatory properties of mesenchymal stromal cells. Blood 2007; 110: 3499–3506.
- Rojas M, Xu J, Woods CR, et al.: Bone marrowderived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol 2005; 33: 145–152.
- 92. Dominici M, Le Blanc K, Mueller I, et al.: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8:

315-317.

- 93. Crisostomo PR, Markel TA, Wang Y, Meldrum DR: Surgically relevant aspects of stem cell paracrine effects. Surgery 2008; 143: 577–581.
- 94. Nemeth K, Leelahavanichkul A, Yuen PS, et al.: Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 2009; 15: 42–49.
- 95. Xu J, Woods CR, Mora AL, et al.: Prevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stem cells in mice. Am J Physiol Lung Cell Mol Physiol 2007; 293: L131–141.
- 96. Lee JW, Fang X, Gupta N, Serikov V, Matthay MA: Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc Natl Acad Sci U S A 2009; 106: 16357–16362.
- Gonzalez-Rey E, Anderson P, Gonzalez MA, Rico L, Buscher D, Delgado M: Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut 2009; 58: 929– 939.
- Fink SL, Cookson BT: Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 2005; 73: 1907–1916.
- 99. Bell CW, Jiang W, Reich CF 3rd, Pisetsky DS: The extracellular release of HMGB1 during apoptotic cell death. Am J Physiol Cell Physiol 2006; 291: C1318–1325.
- 100. Silva MT, do Vale A, dos Santos NM: Secondary necrosis in multicellular animals: an outcome of apoptosis with pathogenic implications. Apoptosis 2008; 13: 463–482.
- 101. Zheng L, He M, Long M, Blomgran R, Stendahl O: Pathogen-induced apoptotic neutrophils express heat shock proteins and elicit activation of human macrophages. J Immunol 2004; 173: 6319–6326.
- 102. Hotchkiss RS, Chang KC, Grayson MH, et al.: Adoptive transfer of apoptotic splenocytes worsens survival, whereas adoptive transfer of necrotic splenocytes improves survival in sepsis. Proc Natl Acad Sci U S A 2003; 100: 6724–6729.
- 103. Chung CS, Xu YX, Chaudry IH, Ayala A: Sepsis induces increased apoptosis in lamina propria mononuclear cells which is associated with altered cytokine gene expression. J Surg Res 1998; 77: 63– 70.
- 104. Hotchkiss RS, Nicholson DW: Apoptosis and caspases regulate death and inflammation in sepsis. Nat Rev Immunol 2006; 6: 813–822.
- 105. Wang SD, Huang KJ, Lin YS, Lei HY: Sepsisinduced apoptosis of the thymocytes in mice. J Immunol 1994; 152: 5014–5021.
- 106. Stubbs JD, Lekutis C, Singer KL, et al.: cDNA cloning of a mouse mammary epithelial cell surface protein reveals the existence of epidermal growth factor-like domains linked to factor VIII-like sequences. Proc Natl Acad Sci U S A 1990; 87: 8417–8421.
- 107. Aziz MM, Ishihara S, Mishima Y, et al.: MFG-E8 attenuates intestinal inflammation in murine experimental colitis by modulating osteopontindependent alphavbeta3 integrin signaling. J

Immunol 2009; 182: 7222-7232.

- 108. Hanayama R, Tanaka M, Miyasaka K, et al.: Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 2004; 304: 1147–1150.
- 109. Aoki N, Kishi M, Taniguchi Y, Adachi T, Nakamura R, Matsuda T: Molecular cloning of glycoprotein antigens MGP57/53 recognized by monoclonal antibodies raised against bovine milk fat globule membrane. Biochim Biophys Acta 1995; 1245: 385– 391.
- Andersen MH, Graversen H, Fedosov SN, Petersen TE, Rasmussen JT: Functional analyses of two cellular binding domains of bovine lactadherin. Biochemistry 2000; 39: 6200–6206.
- 111. Raymond A, Ensslin MA, Shur BD: SED1/MFG-E8: a bi-motif protein that orchestrates diverse cellular interactions. J Cell Biochem 2009; 106: 957–966.
- 112. Henson PM: Dampening inflammation. Nat Immunol 2005; 6: 1179–1181.
- 113. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM: Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGFbeta, PGE2, and PAF. J Clin Invest 1998; 101: 890– 898.
- 114. Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I: Immunosuppressive effects of apoptotic cells. Nature 1997; 390: 350–351.
- 115. Miksa M, Amin D, Wu R, et al.: Maturation-induced down-regulation of MFG-E8 impairs apoptotic cell clearance and enhances endotoxin response. Int J Mol Med 2008; 22: 743–748.
- 116. Bu HF, Zuo XL, Wang X, et al.: Milk fat globule-EGF factor 8/lactadherin plays a crucial role in maintenance and repair of murine intestinal epithelium. J Clin Invest 2007; 117: 3673–3683.
- 117. Matsuda A, Jacob A, Wu R, et al.: Milk fat globule-EGF factor VIII in sepsis and ischemia-reperfusion injury. Mol Med 2011; 17: 126–133.
- 118. Miksa M, Komura H, Wu R, Shah KG, Wang P: A novel method to determine the engulfment of apoptotic cells by macrophages using pHrodo succinimidyl ester. J Immunol Methods 2009; 342: 71–77.
- 119. Miksa M, Wu R, Dong W, Das P, Yang D, Wang P: Dendritic cell-derived exosomes containing milk fat globule epidermal growth factor-factor VIII attenuate proinflammatory responses in sepsis. Shock 2006; 25: 586–593.
- 120. Cui T, Miksa M, Wu R, et al.: Milk fat globule epidermal growth factor 8 attenuates acute lung injury in mice after intestinal ischemia and reperfusion. Am J Respir Crit Care Med 2010; 181: 238–246.
- 121. Matsuda A, Wu R, Jacob A, et al.: Protective effect of milk fat globule-epidermal growth factor-factor VIII after renal ischemia-reperfusion injury in mice. Crit Care Med (in press).
- 122. Komura H, Miksa M, Wu R, Goyert SM, Wang P: Milk fat globule epidermal growth factor-factor VIII is down-regulated in sepsis via the lipopolysaccharide-CD14 pathway. J Immunol 2009; 182: 581–587.

- 123. Miksa M, Wu R, Dong W, et al.: Immature dendritic cell-derived exosomes rescue septic animals via milk fat globule epidermal growth factor-factor VIII [corrected]. J Immunol 2009; 183: 5983–5990.
- 124. Aziz M, Jacob A, Matsuda A, Wang P: Milk fat globulin-EGF factor 8 expression, function and plausible signal transduction in resolving

inflammation. Apoptosis (in press).

(Received, July 25, 2011) (Accepted, October 31, 2011)