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Applications of Statistics to Medical Science, II

Overview of Statistical Procedures for General Use

Hiroshi Watanabe

Department of Mathematics, Nippon Medical School

Abstract

Procedures of statistical analysis are reviewed to provide an overview of applications of
statistics for general use. Topics that are dealt with are inference on a population, comparison
of two populations with respect to means and probabilities, and multiple comparisons. This
study is the second part of series in which we survey medical statistics. Arguments related to
statistical associations and regressions will be made in subsequent papers.
(J Nippon Med Sch 2012; 79: 31―36)
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1. Introduction

In the previous work1, we discussed a conceptual
framework of statistical tests and statistical
inferences. The present paper intends to give an
overview of applications of statistics for general use.
The aim of statistics is to draw inferences on

populations from samples that are randomly chosen
from populations. Statistical inference is made as
point estimation, interval estimation, and a statistical
test for population parameters. In this paper, we
describe typical analysis procedures from these 3
viewpoints.
Textbooks2,3 are rich sources of information on

medical statistics. In particular, we find medical
examples of the statistical procedures presented in
this paper.

2. Inference on a Population

In this section, we describe how to infer

parameters of a population.

Point Estimation
Let M be a population with mean μ and variance

σ2. To infer the values of μ and σ2 from a sample x1,
x2, …, xn that are randomly chosen from M, we
compute a sample mean � and an unbiased
variance v2 defined by

1
n

1
nx̄= xi=  (x1+x2+…+xn),∑

i=1

n

(1)

(2)1
n－1v2= ∑

i=1

n

(xi－x̄ )2.

The expectation values of � and of v2 are equal to
μ and σ2, respectively. Furthermore, if the sample
size n is large, values of � and of v2 concentrate in
the neighborhoods of μ and of σ2, respectively. In
this sense, we write

(3)μ～～ x̄，σ2～～v2.

This is the reason we use � and v2 as estimators
of μ and σ2, respectively.
Values of the estimator � of μ are scattered
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around the value of μ. The magnitude of an error E

associated with this estimation is measured by (the
square root of) the variance of �. Because the
variance of � is equal to σ2�n and σ2 has the
estimator v2, the error E is estimated by the statistic
v�√n, which we call a standard error of � and write

(4)v
√‾SE(x̄)= .
n

Interval Estimation
Let us assume that the population M obeys a

normal distribution. Then, the statistic

(5)x̄－μ
v/√‾

x̄－μ
SE(x̄) nt= =

obeys a t distribution with n - 1 degrees of freedom.
On the basis of this fact, we obtain an interval
estimation for μ as follows. Denote the (1 - α�2) ×
100th percentile of the t distribution with n - 1
degrees of freedom by tn-1 (1 - α�2). Then, the
confidence interval of μ with confidence level 1 - α

is given by

(6)x̄－δ < μ < x̄+δ

with

(7)δ= tn－1 (1－α/2)SE(x̄),

which follows from the bound |t| < tn - 1 (1 - α�2).

Statistical Test
Let μ0 be an arbitrary constant. Then, the null

hypothesis H0: μ = μ0 is tested by means of the
confidence interval (6). A test with significance level
α is implemented by the following rule:
Accept H0 if and only if μ = μ0 belongs to the
interval (6), i.e., if and only if |� - μ0| < δ holds,

where δ is defined by (7). This test is referred to as
a one-sample t test.
Remarks. 1) A one-sample t test is, in fact,

available in the situation where the distribution of
the population might slightly deviate from a normal
distribution. We refer to this property of the one-
sample t test as robustness. However, if the
distribution is far from being normal and the sample
size is not large, we should use nonparametric
statistical methods, such as the Wilcoxon signed-rank

test, for the null hypothesis that the (population)

median is μ0.
2) The one-sample t test for the null hypothesis μ

= 0 is especially important for comparison of paired

samples. See section 3.
3) The definition (5) of t has the form “(estimator -

parameter)�SE”. We shall see later further examples
of this form.
4) Interval estimation of σ2 is possible based on the

fact that (n - 1) v2�σ2 obeys a chi-square distribution
with n - 1 degrees of freedom.

3. Comparison of Two Populations: Means

In this section, we describe how to compare
means of two populations.

Point Estimation
Let Mx and My be populations with means μx and

μy, respectively, and with the same variance

(8)σx
2=σy

2.

To compare means, we estimate the difference μx

- μy. Let x1, x2, …, xm and y1, y2, …, yn be samples
randomly chosen from Mx and My, respectively.
Denote their sample means by � and �,
respectively, and their unbiased variances by vx

2 and
vy
2 , respectively. The difference μx - μy has the
estimator � - � and the squared standard error
SE (� - �)2 of � - � is given by

(9)SE(x̄－ȳ) 2=
(m－1)vx

2+ (n－1)vy
2

m+n－2
⎛
｜
⎝

⎞
｜
⎠

1
m
1
n+

under the assumption (8).

Interval Estimation
Let Mx and My be normally distributed populations

with (8). Then, the statistic

(10)(x̄－ȳ)－(μx－μy)
SE (x̄－ȳ)t=

obeys a t distribution with m + n - 2 degrees of
freedom. On the basis of this fact, we obtain the
following confidence interval for μx - μy:

(11)x̄－ȳ－δ'< μx－μy< x̄－ȳ+δ'

with

(12)δ'= tm+n－2 (1－　α) SE (x̄－ȳ),1
2
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where tm + n - 2 (1 - α�2) denotes the (1 - α�2) × 100th
percentile of the t distribution with m + n - 2
degrees of freedom.

Statistical Test
The null hypothesis H0: μx = μy is tested by means

of the confidence interval (11). A test with
significance level α is implemented by the following
rule:
Accept H0 if and only if μx - μy = 0 belongs to the
interval (11), i.e., if and only if |� - �| < δ́ holds,

where δ́ is defined by (12). We refer to this test as a
two-sample t test.
Remarks. 1) A two-sample t test is applied to

unpaired samples. This means that the two samples
must be independently chosen from two populations.
2) Suppose that we compare a set of data for

patients obtained a year earlier with another set of
data for the same patients obtained a month earlier.
In this case, we cannot regard the sets of data as
unpaired samples, because two results of a patient
may have some dependence. These samples are
called paired samples; the sizes of paired samples
are the same (m = n), and xi and yi make a pair.
Paired samples should be analyzed in the form of
differences xi - yi by using the method stated in
section 2. We refer to this test as a paired t test.
3) When we cannot assume that the populations

are normally distributed, we should use
nonparametric statistical methods as Wilcoxon rank

sum test to compare (population) medians.
4) We can test the assumption (8) by an F test

using the statistic F = vx
2�vy

2 . If we fail in accepting
the hypothesis (8) as a result of the F test, Welch’s

test is available as an alternative of the two-sample t
test.

4. Comparison of Two Populations: Probabilities

In this section, we describe procedures to
compare probabilities.

Probabilities, Relative Risk, and Odds Ratio
Suppose that two properties X and Y are defined

on a population M. For example, X means that a
subject is exposed to a certain situation, and Y means

that we observe a certain outcome for a subject. We
decompose M into two subpopulations M1 and M2

according to whether X holds or not, i.e., an element
of M belongs to M1 (or M2) if the element has (or
does not have, resp.) the property X. Let p1 and p2 be
the probabilities with which Y may hold in M1 and in
M2, respectively.
To compare p1 and p2, we introduce the following

ratios:

(13)relative risk=RR=   ,
p1
p2

(14)odds ratio=OR=   　　　.
p1/(1－p1)
p2/(1－p2)

If X and Y are statistically independent, we have
p1 = p2 and RR = OR = 1.

Point Estimation
The population parameters p1, p2, RR, and OR are

estimated by using a randomly chosen sample.
Sample data for this purpose are categorical and
presented in the form of a contingency table (Table
1). The estimators of p1, p2, RR, and OR are as
follows:

(15)p1～～ 　　，p2～～　　，
a

a+b
c

c+d

(16)a/(a+b)
c/(c+d)RR～～ 　　      . OR～～　　.a/b

c/d

Interval Estimation
We describe how to obtain confidence intervals of

RR and of OR. Put

(17)1
a+b

1
c+d

1
a

1
cw=   －　  +  －　　，

(18)1
b

1
d

1
a

1
cw'=   +  +  +　.

Then, the confidence intervals of RR and OR with
confidence level 1 - α are given by

(19)a/(a+b)
c/(c+d) ez (1－α/2)w,a/(a+b）

c/(c+d）e－z (1－α/2)w<RR<

(20)(a/b)
(c/d) e－z (1－α/2)w'<OR< ez (1－α/2) w',(a/b)

(c/d)

respectively, where z (1 - α�2) denotes the (1 - α�2)
× 100th percentile of the standard normal
distribution and e = 2.71828… is a mathematical
constant.
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Table　1　A contingency table: a sample consisting 
of a+b+c+d elements is divided into four 
categories according to whether or not 
each element has the properties X and Y, 
respectively.

with Y without Y Total

with X a b a+b
without X c d c+d

Total a+c b+d a+b+c+d

Statistical Test
Let us consider statistical tests of the null

hypothesis H0: p1 = p2 by the sample data shown in
Table 1.
The simplest procedure to test H0 is a chi-square

test (or Fisher’s exact test) for a contingency table.
More sophisticated tests rely on the formulae (19)
and (20). For a test using RR (or OR) with
significance level α, we accept H0 if and only if the
value RR = 1 (or OR = 1) satisfies (19) (or (20), resp.).
Remarks. 1) Interval estimations of relative risk

and of odds ratio are useful for assessing causal

relations between exposures and outcomes in cohort
studies and case-control studies. To confirm statistical

associations (instead of causal relations) in cross-
sectional studies, the chi-square test is usually used.
2) In a case-control study, we cannot estimate

relative risk by (16). In fact, the ratios a : b : (a + b)
and c : d : (c + d) are determined by the study plan
(instead of the populations), hence they do not reflect
objective properties of the populations. In this case,
the odds ratio should be estimated, because the
ratios a : c and b : d have objective meanings and
odds ratio approximates relative risk if p1 and p2 are
small, as is seen from (13) and (14).
3) Matched-pair data in a case-control study may

have some dependence within the pair. We therefore
cannot regard the data as being independently
chosen from two populations M1 and M2. In this case,
McNemar’s test can be used to test the null
hypothesis p1 = p2.

5. Multiple Comparisons

In this section, we deal with the problem of
comparing means of three or more populations. It is

essential to understand the reason why pairwise
comparisons may cause a trouble.

Successive Applications of Statistical Tests
Let T1 and T2 be two tests of a null hypothesis H0.

We compose them into a test T as follows: 1)
perform T1 with significance level α; 2) perform T2

with significance level α; and 3) reject H0 if at least
one of these tests rejects H0. The key point is that
the overall significance level ά of the test T is not α. In
fact, if H0 is true, H0 may be rejected with
probability α in each of T1 and T2, hence the
probability ά with which the test T may reject H0 is
given by

(21)α′=1－(1－α) 2=2α－α2 (>α) ,

where we have assumed that consequences of T1

and T2 are independent. Although it is possible to set
α so that ά may be a desired value, e.g., 0.05, the
problem becomes serious, when we successively
perform many tests, because α should be set
extremely small.
For the same reason, pairwise comparisons may

cause an undesired change of significance level,
when we compare three or more populations. In
what follows, we discuss a solution to this problem.

Comparison of Means of Three or More
Populations
Suppose that we are comparing means of r

populations M1, M2, …, Mr. Denote the mean and
variance of Mi by μi and σ2i, respectively, for i =
1, 2, …, r, and assume

(22)σ12=σ22= … =σr
2．

To test the null hypothesis H0: μ1 = μ2 = … =μr, we
randomly choose samples from the populations
(Table 2). Let ni (or �i) be the size (or the sample
mean, resp.) of the sample xi1, xi2，… chosen from Mi

for i = 1, 2, …, r, and denote the total size by N = n1

+ n2 + … + nr. Then, the sample mean over all
groups is given by

(23)x̄= xij=       nix̄i .∑
i
∑ ∑ 

j

1
N

1
N

We introduce two kinds of sums of squares:
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Table　2　A set of samples for a one-way ANOVA: a 
sample chosen from the population Mi 
consists of ni elements and has sample 
mean x̄i. The total size of the samples is N, 
and the sample mean over all groups is x̄.

Population Sample Sample 
size

Sample 
mean

M1 x11，x12，…… n1 x̄1
M2 x21，x22，…… n2 x̄2
… … … …
Mr xr1，xr2，…… nr x̄r

Total N x̄

(24)∑
i
∑

j

　　within-Groups Sum of Squareｓ: 
                                                SSwithin= (xij－x̄i)2 ,

(25)
　　Between-Groups Sum of Squareｓ: 
　　　　　　　　　　　　　SSbetween=∑

i

ni (x̄i－x̄) 2 ,

and put

(26)F= .
SSwithin

1
N－r

SSbetween
1

r－1

Since the quantity SSwithin measures the variances
of data within groups, SSwithin is insensitive to the
population means μ1, μ2, …, μr, whereas SSbetween that
measures the variance of data between groups is
sensitive to population means and is likely to be
large unless

(27)μ1=μ2= … =μr

holds. Then, we expect that F may tend to be large
unless (27) holds.
Assume that M1, M2, …, Mr are normally

distributed populations with (22) and (27). Under
these assumptions, F obeys an F distribution with r

- 1 and N - r degrees of freedom. Therefore, in the
situation where (22) has been confirmed, the null
hypothesis H0: μ1 = μ2 = … =μr is tested with
significance level α by the following rule:
Reject H0 if and only if F＞Fr－1 (1－α)N－r ，

where Fr－1 (1－α)N－r denotes the (1 - α) × 100th
percentile of the F distribution with r - 1 and N - r

degrees of freedom. Note that this is a one-sided
test. If the null hypothesis H0 is false, the statistic F

is likely to be large, hence we should reject H0 if and
only if F is large.

The above procedure is called a one-way analysis
of variance (abbreviated as a one-way ANOVA). In
a situation where the population M is decomposed
into subpopulations M1, M2, …, Mr according to some
factor, e.g., age of subjects, one-way ANOVA works
as a test of whether or not the factor has an effect
on outcomes.
Remarks. 1) As long as (22) is satisfied, the one-

way ANOVA is also available in the situation where
the distributions of the populations may slightly
deviate from a normal distribution. In this sense,
ANOVA is robust. However, if the distributions of
populations are far from being normal, we should
use a nonparametric alternative called the Kruskal-

Wallis test.
2) To confirm the assumption (22) is a subtle

problem. For this purpose, Bartlett’s test is known.
As an alternative of the one-way ANOVA which is
available without the assumption ( 22 ) , an
approximate test using weighting is known.
However, from a practical viewpoint, it may
be advisable to plan a study so that sample sizes n1,
n2, …, nr are equal or close to equal, because the
assumption (22) is not relevant in this situation.
3) Even if we succeed in rejecting the null

hypothesis H0: μ1 = μ2 = … =μr, we cannot clarify
which population mean deviates. This problem needs
a further analysis, which will be discussed in the
next subsection.
4) Using the one-way ANOVA, we can study an

effect of a factor on outcomes. To assess effects of
two factors, we should use a two-way ANOVA.

Contrasts
To compare three means μ1, μ2, and μ3 in detail, we

may want to perform multiple comparisons, i.e.,
inferences of three differences μ1 - μ2, μ1 - μ3, and μ2
- μ3. It will be convenient to introduce a linear
combination c1μ1 + c2μ2 + c3μ3 as a generalization of
the differences, where c1, c2, and c3 are constants
satisfying c1 + c2 + c3 = 0.
A linear combination

(28)λ= c1μ1+c2μ2+…+crμr

of r means μ1, μ2, …, μr is called a contrast, if
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(29)c1+c2+…+cr=0

holds. In what follows, we discuss how to infer the
value of λ from the sample shown in Table 2.
Because μi has an estimator �i, the value of λ is

estimated by the statistic

(30)L=c1x̄1+c2x̄2+…+ crx̄r．

Under the assumption (22), L has the squared
standard error SE (L)2 given by

(31)SE (L)2= 1
N－r

⎛
｜
⎝

⎞
｜
⎠

c1
2

n1
c2
2

n2
cr
2

nr
+ +…+ SSwithin,

where SSwithin is defined by (24).
Assume that population M1, M2, …, Mr are

normally distributed and (22) holds. Then, the
statistic

(32)L－λ
SE(L)t=

obeys a t distribution with N - r degrees of freedom.
A t test by means of (32) being possible, its
successive applications may cause a problem, in
particular if we explore various contrasts one after
another. The key point of the solution is to take into
account all contrasts λ with (29) instead of looking
only at the ones that have direct relevance to our
interest. Let Fr－1 (1－α)N－r be the (1 - α) × 100th
percentile of an F distribution with r - 1 and N - r

degrees of freedom, and put ρ = (r-1) Fr－1 (1－α)N－r .
Then, the following event occurs with probability 1
- α:
the inequality t2 < ρ holds for any contrast λ,
where t is defined by (32). Note that the inequality t2

< ρ yields the following interval estimation of the
corresponding contrast λ:

(33)L－√‾・SE (L)< λ<L+√‾・SE (L) .ρ ρ

The confidence level is not reduced (from 1 - α),
no matter how many contrasts we consider, because
t2 < ρ holds for any contrast (with probability 1 - α).
We refer to this method as Scheffé’s procedure.
As an example, we compare three means μ1, μ2,

and μ3. Consider three contrasts and their estimators

(34)λ1=μ1－μ2，λ2=μ1－μ3，λ3=μ2－μ3，

(35)L1= x̄1－x̄2，L2= x̄1－x̄3，L3= x̄2－x̄3．

The corresponding t statistics are

(36)Li－λi

SE(Li)ti= ，i=1，2，3，

and the following event occurs with probability
larger than 1 - α:
the inequalities t2i < ρ simultaneously hold for i = 1,
2, 3.
Because we consider only three contrasts (34)

instead of all the contrasts, the probability is larger
than 1 - α. The inequality (33) yields simultaneous
confidence intervals

(37)Li－√‾・SE(Li）<λ i <Li+√‾・SE(Li），i= 1 ，2 ，3ρ ρ

for λ1, λ2, and for λ3 with confidence level larger than
1 - α. By means of (37), we can determine which
contrasts differ from 0. Suppose we find that λ1 > 0,
λ2 > 0, and λ3 = 0. Then, our conclusion is μ1 > μ2 =
μ3.
Remarks. 1) We can apply Scheffé’s procedure to

the contrast λ = 2μ1 - μ2 - μ3 for comparison of μ1
and the average of μ2 and μ3. More complicated
comparisons are possible using contrasts.
2) The actual confidence level of the confidence

intervals (37) is larger than 1 - α. This means that
Scheffé’s procedure yields conservative results.
3) If the sizes n1, n2, …, nr of samples are the same,

the Tukey test is available for multiple pairwise

comparisons.
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