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Applications of Statistics to Medical Science, III

Correlation and Regression

Hiroshi Watanabe
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Abstract

In this third part of a series surveying medical statistics, the concepts of correlation and
regression are reviewed. In particular, methods of linear regression and logistic regression are
discussed. Arguments related to survival analysis will be made in a subsequent paper.
(J Nippon Med Sch 2012; 79: 115―120)
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1. Introduction

In the previous works1,2, we studied the conceptual
framework of statistical analysis and actual
procedures for general use. The present work is
devoted to regression methods: linear regression and
logistic regression.
Textbooks3,4 are rich sources of information on

medical statistics. For details of logistic regression,
see5.

2. Linear Regression

In this section, we consider linear regression.
Suppose that we observe n subjects and measure

two quantities X and Y for each subject. Let (x1, y1),
(x2, y2), …, (xn, yn) be obtained data, that is, xj and yj

denote the values of X and Y, respectively, for the
jth subject.
If we draw a scatter plot of the data, we can

roughly grasp relationship between X and Y.
Furthermore, we may see that the quantity Y is

approximately expressed by some function f(X). The
task to find such a function f(X) is called regression.
If a suitable regression is found, it means that
behavior of Y is at least partially explained by that
of X. In particular, regression by means of a linear
function

(1)f (X )=a+bX

is referred to as linear regression.

Regression Coefficients
Given experimental data (x1, y1), (x2, y2), …, (xn, yn),

the optimal coefficients a and b in the right hand of
(1) are determined by means of the method of least

squares. The results are written as

(2)a= ȳ－rxy   x̄= ȳ－bx̄,sy

sx

(3)b= rxy   .
sy

sx

We have denoted sample means by � and �,
standard deviations (not unbiased) by sx and sy, and
Pearson’s correlation coefficient by rxy, i.e.,
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(4)rxy=    ,cxy

sxsy

where cxy stands for a covariance

(5)cxy= 1n∑
i=1

n

(xi－x̄) (yi－ȳ).

Interval Estimation of Regression Coefficients
The regression coefficients a and b given by (2)

and (3) are considered to be point estimates of the
corresponding population parameters a＊ and b＊.
Relation between (a, b) and (a＊, b＊) is analyzed by
means of the following probabilistic model.
We introduce a random variable εi associated with

the ith subject and assume the relation between xi

and yi as follows:

(6)yi=a＊+b＊xi+εi,  i=1, 2,…, n,

where a＊ and b＊ are unknown population
parameters. This means that the value yi of Y has a
deterministic part a＊ + b＊ xi and a stochastic part εi.
Here, ε1, ε2, …, εn are assumed to be independent
random variables that obey the same normal
distribution with mean 0 and variance σ2. These
assumptions are equivalent with the statement that
y1, y2, …, yn obey independent normal distributions
with mean a＊ + b＊ xi and variance σ2 for i=1, 2, …, n,
respectively. The sample values x1, x2, …, xn of X are
regarded as given constants, hence we need not
assume a probability law for X.
We have to infer the values a＊, b＊ and σ2 from a

sample. The estimators for a＊ and b＊ are given by
(2) and (3), and σ2 is estimated by SSresidual�(n - 2),
where SSresidual, a residual sum of squares, is defined by

(7)∑
i=1

n

(a+bxi－yi)2.SSresidual=

Here, a and b are given by (2) and (3). Furthermore,
squared standard errors of a and b are given by

(8)SSresidual
(n－2)n

x̄2

sx2
SE (a)2= (1+　 ) ,

(9)SSresidual
(n－2)nsx2

SE (b)2= ,

respectively. Using the above formulae, we can
make interval estimations of a and b. Especially for b,
a statistic

(10)t= b－b＊
SE(b )

obeys a t distribution with n - 2 degrees of freedom,
hence the confidence interval of b with confidence
level 1 - α is written as

(11)b－tn－2 (1－α/2)SE(b)<b＊<b+tn－2 (1－α/2)SE(b),

where tn - 2(1 - α�2) stands for the (1 - α�2) × 100th
percentile of a t distribution with n - 2 degrees of
freedom.

Statistical Test
We can assess goodness of fit for the linear

regression described above by performing a
statistical test for a null hypothesis H0 : b＊＝0. The
hypothesis H0 means that behavior of Y is not at all
explained by that of X. Then, rejection of H0 means
that behavior of Y is to some extent explained by
that of X as (1).
A statistical test for H0 is done by means of (11),

that is, we accept H0 if and only if b＊＝0 satisfies (11).
We can also perform the following test for H0 based
on the principle of ANOVA. Define a regression sum

of squares SSregression by

(12)SSregression=∑
i=1

n

(a+bxi－ȳ )2,

where a and b are given by (2) and (3). Then, under
the null hypothesis H0, a statistic

(13)F=
SSresidual

1
n－2

SSregression

obeys an F distribution with 1 and n - 2 degrees of
freedom. Therefore, H0 is tested with significance
level α by the rule:
Reject H0 if only if F>F1n - 2(α),

where F1n - 2(α) denotes the α × 100th percentile of
the F distribution with 1 and n - 2 degrees of
freedom.
Remarks. 1) The above two tests by (10) and by

(13) are in fact equivalent because we can show t2=F

under the assumption b＊＝0.
2) Effects of two or more exposures on an

outcome can be analyzed by appealing for
multivariate analysis, in which the linear function
(1) is replaced by

(14)f (X1, X2,…, Xk )＝a+b1X1+b2X2+…+bkXk .

The optimal coefficients a, b1, b2. …, bk are determined
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Table　1　Example data for logistic regression. 
Values of an exposure variable X and 
of an outcome variable Y are shown 
for ten subjects. If Y=1 (or Y=0), it 
means that the outcome is observed 
(or not observed, respectively)

Subject X (exposure) Y (outcome)

 1 2.0 1
 2 2.2 0
 3 2.3 1
 4 2.7 0
 5 2.8 0
 6 2.9 0
 7 3.0 0
 8 3.1 0
 9 3.2 0
10 3.3 0

by the method of least squares and written in terms
of linear algebra.
3) We may want to estimate a population

correlation coefficient rxy＊ instead of the population
regression coefficient b＊. A null hypothesis H0 : rxy＊＝
0 is tested on the basis of the fact that, if X and Y

obey a (two dimensional) normal distribution and if
rxy＊＝0, the statistic

(15)
√‾1－r2xy

t= n－2 rxy√‾

obeys a t distribution with n - 2 degrees of freedom,
Interval estimation of rxy＊ is also possible by means
of z transformation.
4) We may sometimes be interested in concordance

of X and Y instead of their correlation. For example,
when two persons rate some characteristics, e.g.,
stages of a disease, that cannot be measured
objectively, we may want to assess reproducibility
(reliability) of the ratings. This problem would seem
to be dealt with as a problem of linear regression by
the function Y=X and solved by testing the
hypothesis “a＊＝0 and b＊＝1” in (6). However, this
approach is inappropriate by several reasons. We
should use the concordance correlation coefficient
(for pairs) or the overall concordance correlation
coefficient (for general cases). The intraclass
correlation coefficient is also available. For
categorical data, κ coefficient should be used.

3. Logistic Regression

We sometimes encounter problems to which the
method of linear regression by the function (1) or
(14) is not successful because of the simplicity of the
function. Let p be probability of an outcome O and
let X be a biometric quantity that measures a
certain exposure. To judge whether the exposure is
a risk factor of O or not, we assume that p is
determined by X and write

(16)p＝ f (X),

where the function f(X) is suitably chosen according
to a given sample. If f(X) turns out to be a constant
independent of X, we conclude that the exposure is
not a risk factor. For this purpose, the function (1) is

inappropriate, because values of the function f(X) = a

+ bX are not restricted in the interval 0�f(X)�1.
Logistic regression is a solution that is frequently
chosen for this kind of problems.

Example
Suppose that we observe ten subjects and

estimate probability p of a certain outcome O. If two
subjects have the outcome O and the remaining
eight do not, it is reasonable to make an estimate p=
0.2. This estimation may be altered if we have
additional data on a biometric quantity X for the ten
subjects as in Table 1, because the probability p can
depend on X. Our interest is to find a function f(X) in
(16) and judge whether X is a risk factor of O or not.
Let xi and yi be values of X and Y, respectively, for

the ith subject. If yi=1 (or =0), the probability f(xi) of
O for the ith subject should be estimated to be large
(or small), i.e., near to 1 (or 0, resp.). In short, we
expect that f(xi) may be near to yi, i.e.,

(17)yi≒ f (xi), i=1, 2,…, 10.

As is shown in Figure 1, the result of regression
by means of a linear function f(X) = a + bX is not
satisfactory because deviation of the plot from a line
is large, whereas regression by a certain curve
seems to be better. This curve corresponds to the
function

(18)ea+bX

1+ea+bXf (X)= ,
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Fig.　1　Comparison of linear regression and logistic 
regression. The data given by Table 1 are 
drawn by small squares on an XY plane. 
Logistic regression is obviously better than 
linear regression.

with

(19)a＝17.718,  b＝－7.825 .

where e=2.718281828… is a mathematical constant.
Note that the positivity ea + bX>0 implies the inequality
0<f(X)<1.

Logistic Regression Model
Regression by a function in the form of (18) is

called logistic regression. Since f(X) gives a
probability, the quantity

(20)f (X)
1－f (X)

ea+bX=

gives an odds. If b>0 (or <0), the odds ea + bX is
increasing (or decreasing) with respect to X, hence
the model describes a phenomenon that is likely to
be observed when X is large (or small, respectively).
If b=0, the odds is independent of X, that is, X is not
a risk factor of the outcome.
The optimal values of a and b are determined by

means of the method of maximum likelihood, which is a
generalization of the method of least squares. The
method of least squares itself cannot be applied to
this problem because it is justified under the
assumption that Y is normally distributed. For the
data given in Table 1, Y is categorical and yi is
either 0 or 1 for each i, hence the distribution of Y is
far from normal and we cannot assume a model as
(6). This is the true reason for avoiding the method

of least squares in logistic regression.
We cannot write explicit formulae (as (2) and (3))

for the optimal values of a and b determined by the
method of maximum likelihood. Instead, we
numerically obtain the optimal values by using
software packages as SAS and SPSS. The values
shown in (19) were obtained by SPSS.

Interval Estimation of Regression Coefficients
The regression coefficients a and b chosen as

above are considered to be estimates of the
corresponding population parameters a＊ and b＊,
respectively. In this notation, we should write the
logistic regression model as follows:

(21)ea＊＋b＊X

1+ea＊＋b＊Xp= .

Software packages as SAS and SPSS usually
output, in addition to values of a and b, their
standard errors SE(a) and SE(b). In view of these
outputs, we can make interval estimation. In
particular, because the statistic

(22)b－b＊
SE(b)

u=

approximately obeys the standard normal
distribution, a confidence interval for b＊ with
confidence level 1 - α is

(23)b－z (1－α/2)SE(b)<b＊<b+z (1－α/2)SE(b),

where z(1 - α�2) denotes the (1 - α�2) × 100th
percentile of the standard normal distribution.
For the data given in Table 1, we have b=-7.825

and SE(b)=6.367 according to SPSS, from which we
obtain the following confidence interval with
confidence level of 5%:

(24)－16.152<b＊<4.654.

Odds Ratio
In an epidemiological context, we may want to

estimate an odds ratio. In the logistic regression
model (21), ea＊ + b＊X gives an odds. If X is a categorical
variable whose value is 0 or 1, the ratio r＊ of odds
ea＊ + b＊X for X=1 and for X=0 is given by

(25)ea＊＋b＊1

ea＊＋b＊0r＊= = eb＊.

In view of the above formula for the odds ratio r＊,
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Table　2　The structure of data for multivariate 
logistic regression. Values of exposure 
variables X1, X2, …, Xr and of an 
outcome variable Y are measured for n 
subjects. The value of Xj for the ith 
subject is denoted by xji. If yi=1 (or 
yi=0), it means that the outcome is 
observed (or not observed,  respectively) 
for the ith subject

Subject X1 X2 … Xr Y

1 x11 x21 … xr1 y1
2 x12 x22 … xr2 y2

… … … … … …

n x1n x2n … xrn yn

we see that r＊ has a point estimator eb and an
interval estimate has the form

(26)eb－< r＊< eb＋,

where b is the point estimator of b＊ and b± stand for
the limits b ± z(1 - α�2)SE(b) of the confidence
interval (23), respectively.

Statistical Test
Using (23) (or (26)), we can perform a statistical

test of the null hypothesis H0 : b＊＝0 (or r＊＝1, resp.).
The hypothesis H0 means that X is irrelevant to the
probability p of the outcome O, i.e., X is not a risk
factor of O.
A statistical test of H0 with significance level α is

implemented by the following rule:
Accept H0 if and only if b＊＝0 lies in the interval
(23) (or equivalently r＊＝1 lies in the interval (26)).

This test is formulated in a slightly different
manner. If b＊＝0, the definition (22) of u becomes

(27)b
SE(b)u= ,

and u obeys the standard normal distribution. Then,
the hypothesis H0 is tested by the rule:
Accept H0 if and only if │u│＜z(1 - α�2),

where u is defined by (27). Here, we can also use the
statistic

(28)b2

SE(b)2u2= ,

which obeys a chi-squared distribution with one
degree of freedom. This is called the Wald test.

4. Multivariate Logistic Regression

The principle of logistic regression is generalized
to multivariate situations, where simultaneous
effects of exposures on an outcome are assessed. We
assume that probability p of an outcome O may
depend on exposure variables X1, X2, …, Xr in the
following form:

(29)eA

1+eAp= ,

where

(30)A=a＊+b1＊X1+b2＊X2+…+br＊Xr．

The exponent A is a generalization of a＊ + b＊X in

(21). This model is called a multivariate logistic
regression model, and A is referred to as a logit.
Population parameters a＊, b1＊, b2＊, …, br＊ are
estimated by a sample as in Table 2 according to
the method of maximum likelihood. If bi＊≠0 is
shown for some i, the exposure measured by Xi is
considered to be a risk factor of the outcome O.
When the effect of Xi on O is estimated, the other
variables Xj, j≠i, are fixed. This means that possible
confounding by Xj, j≠i, is solved.

Interval Estimation and Statistical Tests
Software packages as SAS and SPSS output the

optimal regression coefficients a, b1, b2, …, br and their
standard errors SE(a), SE(b1), SE(b2), …, SE(br). Then,
by means of the statistic (22) with b and b＊ replaced
by bi and bi＊, respectively, we can make interval
estimation of bi＊ in the same way as (23), and a Wald
test for a hypothesis bi＊＝0 is done. However,
simultaneous Wald tests for two or more parameters
may cause a problem in the interpretation of a
significance level. To this end, we need a likelihood
ratio test that we explain below.
The maximum likelihood procedure searches for

optimal regression coefficients that maximize a
quantity called a likelihood. We refer to the attained
maximum as the maximized likelihood value L. The
larger L is, the better the fit is. Then, we can
compare goodness of fit for two regression models
by means of L. Software packages usually output the
value of L together with a Wald statistic.
Let us consider two logistic regression models
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with logits

(31)A1=a＊+b1＊X1+b2＊X2+…+br＊Xr ,

(32)A2=a＊+b1＊X1+b2＊X2+…+br+s＊Xr+s ,

respectively, where the latter includes extra terms
bj＊Xj, j = r + 1, r + 2, …, r + s. If we put bj＊＝0 for j

� r + 1 in A2, we have A1=A2. In this sense, the first
model is a reduced model of the second. These models
have their maximized likelihood values L1 and L2.
Because the maximum likelihood procedure in the
second model scans wider range of parameters than
in the first model, L2 is necessarily larger than or
equal to L1. If we find L1=L2 with a certain
significance level, it means that the extra terms in
the logit A2 do not really work, hence the exposures
measured by Xj, j � r + 1, are not risk factors.
The significance test based on L1 and L2 is carried

out by looking at a difference of log likelihood statistics

-2 ln L1 and -2 ln L2:

(33)l=(－2lnL1)－(－2lnL2)=2ln L2 ,L1

where ln stands for natural logarithm. Under the
null hypothesis

H0 : bj＊ = 0 for j = r + 1, r + 2, …, r + s,
the statistic l approximately obeys a chi-squared
distribution with s degrees of freedom. Then, the
test of H0 with significance level α is done according
to the rule:
Reject H0 if and only if l > χ 2

s(1 - α),
where χ 2

s(1 - α) denotes the (1 - α) × 100 percentile
of a chi-squared distribution with s degrees of
freedom.
By means of a likelihood ratio test, we can

distinguish significant and nonsignificant variables.
Therefore, it might seem possible to begin with a
model that involves all the exposure variables and to
eliminate nonsignificant variables as a result of the
test. The maximization process for such a large

model, however, is likely to become unstable, and
computer outputs may be numerically unreliable.
For this reason, it is recommended to remove
variables at the outset that are clearly
nonsignificant. To this end, we divide subjects into
two groups with and without the outcome and
compare the exposure variables of the groups. For
example, if distributions of age for two groups are
significantly different, the age variable should be
involved in the model. On the other hand, if
distributions of sex are not significantly different,
the sex variable can be eliminated from the model.
Note that these preliminary tests cannot be
alternative to the logistic regression itself because of
the problem of multiple comparisons. Note also that
the preliminary tests must be conservative, that is,
we have to make the significance level slightly
larger, e.g., 10% so that potential risk factors may
not escape our analysis.
Remark: If the logit A2 contains only one extra

term (i.e., s = 1), a Wald test is also available. In fact,
for a large sample, a Wald test and a likelihood ratio
test give almost the same result. For a small sample
(the sample size < 20), however, a likelihood ratio
test is recommended.
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