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Abstract

The fundamental principles of survival analysis are reviewed. In particular, the Kaplan-
Meier method and a proportional hazard model are discussed. This work is the last part of a
series in which medical statistics are surveyed.
(J Nippon Med Sch 2012; 79: 176―181)
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1. Introduction

In the previous works1―3, we studied the
conceptual framework of statistical analysis and
actual procedures. The present work is devoted to
survival analysis. A typical problem is to estimate
statistically how long subjects may survive or
remain free from a relapse after treatment.
Textbooks4,5 are rich sources of information on

medical statistics. For details of survival analysis,
see6.

2. Survival Probability

Let S(t) be survival probability, that is, S(t) gives
(conditional) probability with which a subject may
survive at time t(>0) who is assumed to be alive at
t=0. Obviously, S(0)=1 holds because a subject was
alive at t=0, and S(t) decreases with respect to t

because a subject is at risk to “die” at each instant.
An example of S(t) is shown in Figure 1. In this

example, the risk of death seems to be high for 0<t<
20 and t>60. In general, the magnitude of risk varies
with time. In Section 4, this statement will be made
more precise.

Kaplan-Meier Method
Let us make statistical inference of survival

probability S(t) by a sample shown in Table 1 (A).
This sample consists of data for 10 subjects: each
subject was followed up for some period after a
certain treatment. A final state, i.e., a state at the
end of a follow-up was “endpoint(1)” or “censored(0)”.
The former means that a subject “died” by the
reason under consideration, whereas the latter
means that a subject was “alive” at the end of a
follow-up, that a subject “died” by another reason we
were not interested in, or that the final state was
unknown. Note that a follow-up may be terminated
by several reasons before a subject meets an
endpoint.
We read the data given in Table 1 (A) as follows:
at t=0, there were 10 subjects to be followed up;
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Fig.　1　An example of survival probability S (t), i.e., 
probability that a subject may be alive at 
time t under the assumption that the 
subject was alive at t＝0.
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Table　1 (A)

Subject Period (months) Final state

 1  2 0
 2  4 1
 3  5 0
 4  7 1
 5 10 1
 6 10 0
 7 12 1
 8 12 1
 9 14 0
10 15 0

Table　1 (B)

Subject Period (months) Final state

11  1 1
12  3 1
13  3 0
14  5 1
15  7 1
16  9 1
17 10 0
18 11 1
19 12 0

Examples of data sets of the Kaplan-Meier 
method. Group A (or B) consists of 10 (or 9, 
respectively) subjects. The subjects were 
followed up for some period of time after certain 
treatments, and their final states were recorded. 
(0 and 1 mean “censored” and “endpoint,” 
respectively.) 

at t=2, no subject in 10 met an endpoint, and 1
was censored (9 remain);
at t=4, 1 subject in 9 met an endpoint, and no one

was censored (8 remain);
at t=5, no subject in 8 met an endpoint, and 1 was

censored (7 remain);
at t=7, 1 subject in 7 met an endpoint, and no one

was censored (6 remain);
at t=10, 1 subject in 6 met an endpoint, and (then)

1 was censored (4 remain),
and so on. We have assumed that events happened
at t=2, 4, 5, 7, 10, 12, 14, 15, although the precise time
of each event is not known. Then we can make
inference on S(t) as follows:

(1)S (t) =1,  0< t<2,

(2)10
10S (t) =1・ ，  2< t<4,

(3)10
10S (t) =1・ 8

9・ ，  4< t<5,

(4)10
10S (t) =1・ 8

9・
8
8・ ，  5< t<7,

(5)10
10S (t) =1・ 8

9・
8
8・
6
7・ ，  7< t<10,

(6)10
10S (t) =1・ 8

9・
8
8・
6
7・
5
6・ ， 10< t<12,

(7)10
10S (t) =1・ ，8

9・
8
8・
6
7・
5
6・
2
4・ 12< t<14,

(8)10
10S (t) =1・ ，8

9・
8
8・
6
7・
5
6・
2
4・
2
2・ 14< t<15.

The survival probability S(t) calculated as above is

drawn as curve A in Figure 2. Curve A is
discontinuous at t=4, 7, 10, 12, i.e., when subjects met
endpoints. These times are called failure times. Note
that the thus obtained function S(t) is not the true
(population) survival probability but its statistical
inference. This method is referred to as the Kaplan-
Meier method.

Log-Rank Test
We next discuss how to compare (true) survival

probabilities for two groups. Let SA(t) and SB(t) be
Kaplan-Meier survival probabilities for the data
given in Table 1 (A) and (B), respectively. Curve B
in Figure 2 corresponds to SB(t).
The problem that arises is whether the survival

probabilities for A and B are significantly different
or not. In what follows, we introduce a method
referred to as the log-rank test.
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Fig.　2　Examples of Kaplan-Meier survival probabilities. The curves A 
and B show survival probabilities that are obtained by means of 
the Kaplan-Meier method from the data given in Table 1 (A) and 
(B), respectively. The mark “＋” indicates a censored case.
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Table　2

group A group B total

at an endpoint  0 1  1
remaining 10 8 18
total 10 9 19

A contingency table for a log-rank test. This table is 
produced from Table 1 (A) and (B) for t＝1. No (or 1) 
subject meets an endpoint, and 10 (or 8) subjects 
remain to be followed up in group A (or B, 
respectively).

Table　3

group A group B total

at an endpoint aj bj aj＋bj

remaining cj dj cj＋dj

total aj＋cj bj＋dj nj

A general form of contingency table for a log-rank 
test: aj (or bj) subjects meet endpoints, and cj (or dj) 
subjects remain to be followed up in group A (or B, 
respectively) at, t＝tj, the jth failure time.

We make a contingency table at each failure time.
We make no table at a time when no subject meets
an endpoint, and we have only censored subject(s).
For example, a contingency table for t=1 is as Table
2, and we do nothing for t=2. A general form of a
contingency table for the jth failure time tj is shown
in Table 3.
We define a log-rank statistic X 2

LR by

(9)X 2
LR=
(OA－EA)2

EA

(OB－EB)2

EB
,+

where

(10)OA= ,aj∑
j

(11)OB= ,bj∑
j

(12)EA= ,(aj＋bj) (aj＋cj)
nj

∑
j

(13)EB= .(aj＋bj) (bj＋dj)
nj

∑
j

The statistic X 2
LR approximately obeys a chi-

squared distribution with 1 degree of freedom under
the null-hypothesis H0: true (population) survival
probabilities for groups A and B are the same. Note
that the summands in the right sides of (12) and (13)
are the expected numbers of events under H0. Then,
a test for H0 with significance level α is done
according to the rule: reject H0 if and only if X 2

LR

>χ 21 (1-α), where χ 21 (1-α) denotes the (1-α)×100th
percentile of a chi-squared distribution with 1 degree
of freedom.
Another test called a Mantel-Haenszel test for the

above null-hypothesis H0 uses the following statistic
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Table　4

subject W (period) X (exposure) Y (exposure) Z (final state) 

1 w1 x1 y1 z1
2 w2 x2 y2 z2
3 w3 x3 y3 z3
… … … … …
n wn xn xn zn

A general form of data set to which a proportional hazard model with 2 
exposure variables can be fitted. The jth subject, who has exposure 
variables X＝xj and Y＝yj, was followed up for a time period of length wj 
and the final state was zj. The exposure measured by variable X may be, 
e.g., “treatment” (X＝1) and “placebo” (X＝0), whereas Y may be age of 
each subject. The meaning of final states is the same as in Table 1.

(14)X 2
MH=
(OA－EA)2

V

(OB－EB)2

V
,=

where

(15)V= .(aj＋bj) (cj＋dj) (aj＋cj) (bj＋dj)
n2j (nj－1)

∑
j

The statistic X 2
MH approximately obeys a chi-

squared distribution with 1 degree of freedom under
H0.
Remarks. 1) The above two tests using X 2

LR and
X 2
MH, respectively, give, in most cases, the same
result. In fact, the test using X 2

MH is a special case of
a more general procedure called the Mantel-Haenszel

test that is applicable to a log-rank situation.
2) Mantel-Haenszel tests for more than 2 groups

are also possible. The statistic that is used for this
purpose is mathematically more complicated and is
given in terms of a matrix.
3) If the samples have no censored cases, we can

use the Wilcoxon rank sum test with respect to the
2 sets of failure times. Consider the data given in
Table 1 (A) and (B) with the final state 1 (an
endpoint) for all the subjects. Then, we can apply
the Wilcoxon rank test to the 2 sets
{2,4,5,7,10,10,12,12,14,15} and {1,3,3,5,7,9,10,11,12}. Note
that a nonparametric method should be used
because we cannot assume the normality of
probability distributions of failure times.

3. Proportional Hazard Model

In this section, we discuss how to estimate effects
of exposure on survival probability.

Data Set
Consider the data for n subjects, as in Table 4.

The quantities X and Y measure some exposure, and
values of X and of Y for the ith subject are denoted
by xi and yi, respectively. These variables may be
quantitative or categorical. For example, xi=1 (or =0)
may mean that the ith subject received (or did not
receive, respectively) a certain treatment, and yi may
denote the age of the ith subject. The variable Z

denotes final states, i.e., “endpoint(1)” or “censored
(0)”.
If we ignore the columns for X and Y, Table 4 has

the same structure as Table 1 (A) (and as (B)). If
we ignore the column for Y and break the table into
a group with the final state 1 and a group with the
final state 0, we obtain a set of tables as Table 1 (A)
and (B) that are combined.
Our aim is to make an inference on the (true)

survival probability S(x, y, t) for a subject who has
exposure given by X=x and Y=y. The number of
exposure variables (2 in Table 4) can be generalized
to an arbitrary positive integer.

Statistical Model
To obtain the survival probability S(x, y, t) as a

function of x, y, and t, we adopt a statistical model
called the proportional hazard model. Our task is to
determine the optimal values of parameters included
in this model so that the model may describe our
experimental data. In spite of an apparently special
form of the proportional hazard model, it is, in fact,
based on the general concept of hazard as explained
in Section 4 and has wide applications.
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Let us introduce the proportional hazard model.
We make the following assumptions about the
survival probability S(x, y, t):
1. The function S(x, y, t) depends on x, y, and t

through the form:

(16)S (x ,  y ,  t) =S0 ( t) c (x, y) ,

where c(x, y) is a function of x and y independent of t

and S0(t) is a function of t independent of x and y.
2. The function c(x, y) has the following form:

(17)c (x ,  y) = ea＋b1x＋b2y,

where e=2.71828… is a mathematical constant.
The function S0(t) on the right side of (16) is a

(virtual) prototype survival probability, and S(x, y, t)
is assumed to be a modification of S0(t) by c(x, y). The
meaning of the assumption (16) will be explained in
Section 4 by using the concept of hazard. On the
other hand, (17) implies that 2 kinds of exposure
measured by X and Y, respectively, have mutually
independent effects on subjects as risk. The model
that is characterized by the assumptions (16) and
(17) is called the proportional hazard model or
Cox’s model.
If b1>0, c(x, y) given by (17) is increasing with

respect to x, and S(x, y, t) given by (16) is decreasing
with respect to x because 0≦S0(t)�1. Therefore, the
larger X is, the less likely a subject will survive.
Similarly, if b1<0, the smaller X is, the less likely a
subject will survive. In both cases (i.e., if b1≠0), the
exposure measured by X is a risk factor.

Statistical Inference
Optimal coefficients b1 and b2 are determined by

the method of partial likelihood. (The value of a is of
no use because we are interested in the effects of
exposure.) We, however, cannot write explicit
formulae for the optimal values. Instead, we
numerically obtain them by using software
packages, such as SAS and SPSS. Such programs
output the optimal values of coefficients b1, b2, their
standard errors SE(b1), SE(b2), and a log likelihood
statistic -2 log L (or log L). Then, in the same way as
logistic regression3, we can make use of the outputs
for the following aims: 1) to produce interval
estimation for population values b1＊ and b2＊

corresponding to b1 and b2, respectively; 2) to
perform a Wald test for statistical significance of the
coefficients b1 and b2; and 3) to perform a likelihood
ratio test by means of a log likelihood statistic -2 log
L. In fact, the description in the subsection “Interval
estimation and statistical tests” in Section 4 of3 can
be read in the context of a proportional hazard
model by interpreting the logits (31) and (32) in3 as
exponents of c(x, y) in (17).

Interpretation of Significance Tests
Suppose that X is a “treatment�placebo” variable,

and Y denotes age for each subject. If the population
parameter b1＊ is significantly nonzero, it implies that
the treatment has a real effect. Furthermore, we
have solved a possible confounding by age on the
effect of the treatment because the effect of age Y

was estimated and separated in the proportional
hazard model.
Let us define a reduced model with only the

“treatment�placebo” variable X but without the age
variable Y. This model can be fitted to the data
given in Table 4 by ignoring the Y column. Suppose
that the log likelihood statistics of the full model
(with X and Y) and of the reduced model (without Y)
are significantly different. Then, we conclude that
the variable Y is meaningful; hence, age is a real
confounding factor. For this aim, we can also
perform a Wald test for the full model to test the
significance of b2.
Remark. The likelihood ratio test and the Wald

test may not give the same conclusion. In general,
the log likelihood test is preferable.

4. Hazard

In this section, we discuss the concept of hazard.

Hazard Function
Let S(t) be a survival probability as shown in

Figure 1. The values S(t) and S(t+Δt) are the
probabilities with which a subject may be alive at t

and t+Δt, respectively, under the assumption that
the subject is alive initially (at t=0). The difference
S(t)-S(t+Δt), therefore, gives the probability that the
subject may meet an endpoint in a time interval [t,
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t+Δt]. If Δt is a small positive number, the difference
S(t+Δt)-S(t) is proportional to Δt, and the
proportional constant is called a derivative of S(t),
which is written as ,dS (t)

dt
hence

(18)S (t)－S (t＋Δ t)～～－ Δ t.dS (t)
dt

We thus see that the probability that a subject
who is alive at t may meet an endpoint in a time
interval [t,t+Δt] is given by

(19)～～－ Δ t,dS (t)
dt

1
S (t)

S (t)－S (t＋Δ t)
S (t)

because the subject may be alive at t with
probability S(t). We write the right side of (19) as
h(t)Δt. Namely, we put

(20)＝－h (t)S (t) .dS (t)
dt

The function h(t) measures instantaneous
magnitude of risk at time t, i.e., it gives probability
that a subject who is alive at t may meet an
endpoint per unit time just after the time t. We refer
to h(t) as a hazard function. The larger h(t) is, the
more likely a subject may “die” at t. In particular, if
the function h(t) is a constant λ>0, the corresponding
survival probability S0(t) is given by

(21)S0 (t)＝ e－λt，t>0.

For a time-dependent function h(t), we can
mathematically determine survival probability S(t)
with h(t) as its hazard function.

Proportional Hazard Model
Assume again that a hazard function is a constant

λ. Then, (21) implies that

(22)S0 (t) c＝ e－cλt，

where c is an arbitrary positive constant. Namely,
the hazard function for S0(t)c is cλ, i.e., c times the
hazard function for S0(t).
The above fact is generalized for a time-

dependent hazard. Let h0(t) and h(t) be hazard
functions for survival probabilities S0(t) and S0(t)c,
respectively. Then, it holds that

(23)h (t)＝ ch0 (t) ,

where c is independent of time t. Namely, the hazard
function for S0(t)c is c times that for S0(t).
In view of (23), we can interpret the assumption

(16) of a proportional hazard model. Let h(x, y, t)
and h 0 (t ) be hazard functions for survival
probabilities S(x, y, t) and S0(t), respectively. Then,
the assumption (16) is equivalent with

(24)h (x,  y,  t)＝ c (x,  y)h0 (t) .

Note that c(x, y) is independent of t. The hazard
function h0(t) is called a baseline hazard function. Thus,
in a proportional hazard model, exposure acts on
each subject as risk so that the subject is c(x, y)
times more likely to “die” at each instant.

Hazard Ratio
If X is a categorical variable with a value 0 or 1,

the hazard functions for x=1 and for x=0 are given
by h(1, y, t) and h(0, y, t), respectively, hence (24)
implies

(25)=
h (1, y, t )
h (0, y, t )

c (1, y ) .
c (0, y )

Furthermore, using the assumption (17), we have
the following formula for a hazard ratio:

(26)
h (1, y, t )
h (0, y, t ) =

ea＋b1・1＋b2y

ea＋b1・0＋b2y = eb1.

By means of (26), we can produce a confidence
interval of a hazard ratio from that of b1 (precisely, of
b1＊).
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