Background: Treatment of multiligament knee injuries, especially in adolescent patients, is challenging for orthopedic surgeons. Repair of collateral ligaments and reconstruction of cruciate ligaments are usually performed, however, ligament reconstruction with transphyseal or physeal-sparing techniques may lead to physeal damage and growth disturbances in skeletally immature patients. We present a case report on performing bicruciate ligament sutures arthroscopically in an adolescent patient.

Patient and Methods: The patient was a 14-year-old boy, who was diagnosed with injuries to the anterior cruciate ligament, posterior cruciate ligament, and medial collateral ligament. Single-stage arthroscopic primary suturing of the anterior and posterior cruciate ligaments and open medial collateral ligament suturing were performed 7 days after the injury.

Results and Discussion: The patient returned to routine activities, including high-level competitive sports, at 8 months post-surgery, and currently, 8.5 years after surgery, remains without complications. Suture repair was able to minimize the size of the bone tunnels and to re-establish knee stability with native tissues. Therefore, the application of sutures may be a useful option for repairing multiligament knee injuries, particularly in adolescent patients. (J Nippon Med Sch 2017; 84: 301–303)

Key words: multiligament knee injury, adolescent patient, ligament suture, anterior cruciate ligament, posterior cruciate ligament

Introduction

Multiligament knee injuries are defined as a complete cruciate tear (grade III) plus a partial/complete collateral tear (grade II/III) or a partial/complete tear of the other cruciate (grade II/III) among the four major ligaments: anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), medial collateral ligament (MCL) and lateral collateral ligament.

Repair of collateral ligaments and reconstruction of cruciate ligaments are usually performed. However, in skeletally immature patients, ligament reconstruction with transphyseal or physeal-sparing techniques may lead to concerns regarding potential growth arrest and resulting angular deformities. To avoid this, we used arthroscopic bicruciate ligament sutures for multiligament knee injury in an adolescent patient.

Case Report

A 14-year-old boy came to our institution with right knee pain after a valgus force on the knee while practicing Judo.

The knee was swollen and exhibited a critically limited range of motion (ROM). Knee laxity was confirmed by anterior, posterior and valgus stress tests. Open physes of the knee were radiographically detected, and ruptures of the ACL, PCL and MCL were confirmed by magnetic resonance imaging (Fig. 1). Therefore, we diagnosed the patient as type 1a based on the French Society of Orthopedic Surgery and Traumatology (SOFCOT) 2008 classification.

Surgical Procedures

The operation was performed 7 days post-injury. The medial knee was exposed, with the exposed superficial MCL (sMCL) showing rupture at the tibial attachment. The joint capsule and deep MCL were also torn. How-
Fig. 1 MRI indicated the disruption of the MCL at the tibial side (a), the ACL at the tibial side (b) and the PCL at the femoral side (c).

However, the posterior oblique ligament was not injured. We reduced the sMCL underneath the hamstrings and sutured it to the tibial insertion with two absorbable suture anchors (Smith & Nephew Inc., Memphis, TN, USA). Medial instability markedly improved.

Arthroscopic findings showed the intrasubstance tears of the ACL at the tibial side and the PCL at the femoral side. Both the medial and lateral menisci were intact. Two FiberWire (Arthrex Inc., Naples, FL, USA) sutures were used at the ruptured edges of the ACL and PCL and tied with a loop suture. We created 4.5-mm diameter bone tunnels in the tibia for the ACL and in the femur for the PCL (Acufex, Smith & Nephew Inc., Memphis, TN, USA) and tied the sutures with pre-cut titanium plates (DePuy Synthes, West Chester, PA, USA). We sutured the anterior portion of the residual PCL with a suture anchor (Fig. 2).

Postoperative Findings and Rehabilitation
After 2 weeks of outer fixation, ROM training from 20° to 100° was initiated, with a PCL knee brace involving a traction system (Nishinichon Rinsho Igaku Kenkyujo, Nalatsu, Oita, Japan). The patient was allowed to jog with the PCL brace (DonJoy, DJO Global, Vista, CA, USA) 5 months post-surgery. After the second-look arthroscopy 8 months post-surgery, the patient was allowed to practice Judo.

Recent Clinical Evaluations
At 8.5 years post-surgery, the patient participates in
unrestricted sports activities. The patient’s knee ROM
was 0°–145°, his Lysholm score was 95, with inconstant
and slight pain post-training, and his Tegner score was 9.
Grade I posterior drawer was detected; however, there
was no rotational instability. No growth disturbance was
evident.

Discussion
The treatment target in a multiligament injury is treating
all disrupted structures (particularly grade III), otherwise
excessive stress forces on the treated ligaments may re-
result in re-rupture of the treated ligaments1.

In terms of surgery timing, 3 weeks is considered as
the demarcation between early and delayed surgery. For
suture repair, early surgery is recommended because
later repair is insufficient owing to scaring, retraction
of ligament stumps, and granulation in the delayed pe-
period2,6,7.

Reconstruction of cruciate ligaments is the standard
surgical procedure. However, there remains some uncer-
tainty pertaining to the detriments of bone tunnels in
skeletally immature patients.

For these reasons, we used early suture repair of all
disrupted ligaments. The benefits of suture repair in-
cluded minimizing the size of the bone tunnels, avoiding
harvest site discomfort, and re-establishing knee stability
with native tissues. Therefore, we performed suturing in
adolescent patients only if the surgery was performed
within 3 weeks after the injury, the remnant existed, and
the patients could follow our rehabilitation protocol.

A detrimental factor in early surgery is the difficulty of
arthroscopic procedures owing to irrigation liquid leaks
because of capsule tear. Moreover, fluid extravasation
causes compartment syndrome and results in a risk of ar-
throfibrosis1. Therefore, in this case, the knee was closed
after the MCL suture and arthroscopic procedure.

Grade I posterior drawer was evident, suggesting that
the ROM training was too aggressive for the repaired
PCL. However, the patient returned to his routine activi-
ties. This suggests that arthroscopic primary suturing is
an option, particularly in skeletally immature patients

with multiligament knee injuries.

Conclusion
Arthroscopic primary suturing for b cruciate ligaments
was performed in an adolescent patient with multilig-
ament knee injury. The patient could return to his routine
activities without growth disturbance. Primary suturing
is considered to be an option for multiligament knee in-
juries, particularly in skeletally immature patients.

Conflict of Interest: The authors declare no conflicts of inter-
est.

References
1. Cox CL, Spindler KP: Multiligamentous Knee Injuries—
2. Fanelli GC, Fanelli DG: Knee Dislocations and PCL-Based
Multiligament Knee Injuries in Patients Aged 18 Years
and Younger: Surgical Technique and Outcomes. J Knee
3. Frosch KH, Stengel D, Brodhun T, Stietencron I, Holsten
D, Jung C, Reister D, Voigt C, Niemeyer P, Maier M,
Hertel P, Jagodzinski M, Lill H: Outcomes and risks of
operative treatment of rupture of the anterior cruciate
ligament in children and adolescents. Arthroscopy 2010;
26: 1539–1550.
Rosset P, Saragaglia D, Neyret P; French Society of Ortho-
pedic Surgery and Traumatology (SOFCOT): French Soci-
ety of Orthopedic Surgery and Traumatology (SOFCOT)
Bicruciate ligament lesions and dislocation of the knee:
mechanisms and classification. Orthop Traumatol Surg
5. Ihara H, Miwa M, Takayanagi K, Nakayama A: Acute
torn meniscus combined with acute cruciate ligament in-
jury. Second look arthroscopy after 3-month conservative
6. Cook S, Ridley TJ, McCarthy MA, Gao Y, Wolf BR, Amend-
dola A, Bollier MJ: Surgical treatment of multiligament
23: 2983–2991.
7. Frosch KH, Preiss A, Heider S, Stengel D, Wohlmuth P,
Hoffmann MF, Lill H: Primary ligament sutures as a
 treatment option of knee dislocations: a meta-analysis.

(Received, March 18, 2017)
(accepted, August 24, 2017)