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Background: Neuropathic pain is an intractable chronic pain condition caused by damage to the soma-

tosensory system. Although non-coding RNAs such as microRNAs are important regulators of neuro-

pathic pain, the role of long non-coding RNAs (lncRNAs) is poorly understood.

Methods: This study used a rat model of neuropathic pain induced by lumbar fifth spinal nerve liga-

tion (SNL). Microarray analysis of lncRNAs in the lumbar fifth dorsal root ganglion was performed at

day 14 after SNL. Expression levels of H19 were examined by using quantitative PCR. In situ hybridiza-

tion was used to determine the distribution of H19 at day 14 after SNL. Schwann cells were isolated

from peripheral nerves at day 14 after SNL.

Results: H19 lncRNA was greatly increased in the L5 dorsal root ganglion at day 14 after SNL and was

significantly higher at and after day 4. In the dorsal root ganglion, H19 was detected mainly in non-

neuronal cells but not in primary sensory neurons. Consistent with this, H19 expression was upregu-

lated in Schwann cells isolated from peripheral nerves after SNL.

Conclusion: Increased H19 lncRNA in Schwann cells might be involved in neuropathic pain.

(J Nippon Med Sch 2019; 86: 215―221)
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Introduction

Damage to the peripheral nerves of primary sensory neu-

rons is a major cause of intractable neuropathic pain1,2.

Although recent analgesics have improved neuropathic

pain therapy, pharmacotherapy for neuropathic pain re-

mains unsatisfactory because of its low efficacy and the

risk of severe adverse effects3. After peripheral nerve in-

jury, primary sensory neurons become sensitized and

spontaneously transmit nociceptive information to the

spinal cord. In addition, Schwann cells near the injury

site undergo phenotypic changes that cause neuropathic

pain. These cells induce neuroinflammation and sensiti-

zation of sensory neurons through multiple extracellular

signaling molecules, such as cytokines and neurotrophic

factors4,5.

Non-coding RNAs have critical functions in physi-

ological and pathological nociceptive processing. MicroR-

NAs, which repress target gene expression at the post-

transcriptional level6, are involved in pain modulation7,8.

However, the involvement of long non-coding RNAs

(lncRNAs), i.e., those longer than 200 nucleotides, is

poorly understood in pain disorders, although tens of

thousands of lncRNA genes are believed to be present in

mammals9. LncRNAs were reported to have diverse

physiological and pathological functions related to devel-

opment and oncogenesis10―13. Regarding neuropathic pain,
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Zhao et al. reported that lncRNA Kcna2 antisense RNA

has a causal role through Kcna2 protein downregulation,

which induces neuropathic pain in dorsal root ganglion

(DRG) neurons14.

lncRNA H19 was one of the first lncRNAs identified15

and is an oncogene in a variety of cancers16. H19 is re-

ported to function as a competing endogenous RNA17

that binds to and blocks microRNAs through base pair-

ing. In addition, H19 binds to protein molecules, to guide

their localization18. Interestingly, H19 also functions as a

precursor for microRNA miR-675, which is encoded in

the first exon of H1919. In this study, we show that H19 is

persistently increased in Schwann cells along the periph-

eral axon of primary sensory neurons under neuropathic

pain conditions. H19 may thus be involved in the patho-

genesis of neuropathic pain.

Materials and Methods

Animal Models

Male Sprague-Dawley rats (age 5-6 weeks) were used

for all experiments. All experimental procedures were re-

viewed by the Animal Experiments Ethical Review Com-

mittee and approved by the President of Nippon Medical

School (approval number, 27-037). All surgeries were per-

formed under deep anesthesia with isoflurane inhalation

(2%-3%). Neuropathic pain was induced by spinal nerve

ligation (SNL), as previously described20. Briefly, the left

lumbar fifth (L5) spinal nerve was exposed and tightly

ligated with 4-0 silk thread at two sites separated by

about 1 mm. For sham surgery, the L5 spinal nerve was

exposed but not ligated. The L5 DRG, ventral root, dor-

sal root, and peripheral nerves proximal and distal to the

ligated site were removed, frozen in liquid nitrogen, and

stored at −80°C until RNA purification. The proximal pe-

ripheral nerve was collected between the DRG and

ligated sites. For the distal peripheral nerve, a 10-mm

length of peripheral nerve was collected distal to the

ligated site.

Behavioral Tests

Hindpaw withdrawal response to mechanical stimulus,

a measure of mechanical allodynia, was determined with

von Frey filaments (Muromachi Kikai, Tokyo, Japan). The

weakest force (g) that induced hindpaw withdrawal was

regarded as the paw withdrawal threshold, when the rat

responded at least three times in five trials. To examine

thermal hyperalgesia, we used the Plantar test (Ugo

Basile, Comerio, Italy). Each rat was placed on a glass

plate, and a radiant heat generator below the plate was

used to stimulate the rat twice, with an interval of at

least 5 min. Paw withdrawal latency was defined as the

mean of the two trial results.

Microarray Analysis

RNAiso Plus (Takara Bio, Shiga, Japan) was used to

extract total RNA from L5 DRGs 14 days after SNL or

sham surgery. LncRNA microarray analysis was per-

formed by using a custom microarray slide that included

transcripts catalogued as genes that are not known

mRNAs in the SurePrint G3 Rat GE 8×60 K microarray

slide (Agilent Technologies, Santa Clara, CA, USA) and

rat transcripts that were potentially homologous to

known human lncRNAs. Gene-specific probes were con-

structed in accordance with the manufacturer’s protocol

(Agilent Technologies). Total RNA (100 ng) was subjected

to cyanine 3-labeled cDNA synthesis by using a Low In-

put Quick Amp WT Labeling Kit (Agilent Technologies).

cDNA was hybridized on a microarray slide at 65°C for

17 hours. The hybridized slide was scanned by a DNA

Microarray Scanner (Agilent Technologies), and fluores-

cent intensity was quantified with Feature Extraction

software (Agilent Technologies). The data were analyzed

with Gene Spring GX software (Agilent Technologies).

Quantitative Reverse Transcription-PCR

Total RNA (300 ng for DRG and the peripheral nerve;

100 ng for the ventral and dorsal roots) was reverse-

transcribed with a random primer by using an iScript Se-

lect cDNA Synthesis kit (Bio-Rad, Hercules, CA, USA).

The purity and concentration of the extracted RNAs were

measured with a Nanodrop 1000 Spectrophotometer

(Thermo Fisher Scientific, Waltham, MA, USA). Quantita-

tive PCR was performed by using Power SYBRⓇ Green

PCR Master Mix and the StepOnePlus™ Real-time PCR

System (Thermo Fisher Scientific). A primer pair for H19

was designed by using Primer-BLAST (https://www.nih.

gov/) with the following sequences: forward, 5’-AGACA

TGACATGGTCCGGTG-3’, reverse, 5’-GGTGTTCAGGAA

GGCTGGAT-3’. All samples were measured in triplicate.

Amplification efficiency was calculated by assaying seri-

ally diluted samples, and relative expression levels were

calculated.

In situ Hybridization
To produce an in situ hybridization probe for H19, a

fragment of H19 was amplified from rat DRG-derived

cDNA by using forward (5’-GCCAGTCAAGACTGAGGC

TG-3’) and reverse (5’-GGGTTCAAGGTAGGGGGAAG-

3’) primers attached with EcoRI and BamHI restriction

sites, respectively, and then inserted into pBluescript II

(Agilent Technologies). After linearization, a digoxigenin-

labeled RNA probe was synthesized by using T3 polym-
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Fig.　1　Dynamic changes in H19 expression in a neuropathic pain model.

Mechanical allodynia (A) and thermal hyperalgesia (B) were examined on the control and SNL sides of 

rats after SNL (n = 7; *P < 0.05, **P < 0.01, and ***P < 0.001 by Mann-Whitney U-test for mechanical hy-

peralgesia and paired t-test for thermal hyperalgesia). (C) Microarray analysis was performed in the L5 

DRG on the control and SNL sides 14 days after SNL. Differentially expressed genes are shown by filled 

circles. (D) Time course of changes in H19 expression was examined in L5 DRG by using quantitative 

PCR (n = 5-6; *P < 0.05, **P < 0.01 and ***P < 0.001 by paired t-test or Mann-Whitney U-test).

erase (Roche Diagnostics, Basel, Switzerland). For a con-

trol experiment, a sense probe was synthesized with SP6

polymerase.

Rats were transcardially perfused with phosphate-

buffered saline (PBS) followed by 4% paraformaldehyde

in PBS. DRG and peripheral nerve proximal to the

ligated site were excised, post-fixed in the same fixative

overnight at 4°C, and cryoprotected in 20% sucrose in

PBS overnight at 4°C. The tissues were rapidly frozen in

dry ice/acetone and sectioned at a thickness of 10 μm

with a cryostat (Leica Microsystems, Wetzlar, Germany).

The sections were treated with 10 μg/μL proteinase K for

5 min. After incubation in 4% paraformaldehyde/PBS for

20 min, the sections were hybridized with an RNA probe

in hybridization buffer (50% formamide, 5× SSC pH 4.5,

1% SDS, 50 μg/mL heparin sodium, and 50 μg/mL yeast

RNA) at 65°C overnight. The sections were washed with

wash buffer (50% formamide, 5× SSC pH 4.5, and 1%

SDS) at 65°C for 30 min and then washed thrice with a

second wash buffer (50% formamide and 2× SSC pH 4.5)

at 65°C for 30 min. Then, an alkaline phosphatase-

conjugated anti-digoxigenin antibody (1:2,000; Roche Di-

agnostics) was incubated at 4°C overnight. The sections

were stained with BM-purple (Roche Diagnostics) for 5

days. Images were captured by using a high-resolution

microscope equipped with a computer (Olympus, Tokyo,

Japan).

Schwann Cell Isolation

The bilateral peripheral nerves (from the L5 spinal

nerve to the bifurcation of the tibial nerve and common

fibular nerve) were excised, cut to a length of 1 mm, and

preserved in F12 medium at 4°C. Nerves were treated

with 5 mg/mL collagenase (Wako, Osaka, Japan) and 1

mg/mL dispase II (Roche Diagnostics) in PBS for 30 min

at room temperature. After trituration with gentle pipet-

ting, the cell suspension was passed through a cell
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Fig.　2　Upregulation of H19 expression along the peripheral nerve of primary sensory neurons. 

(A, C) H19 distribution was examined in the L5 DRG (A) and proximal nerve (C) of control and SNL 

sides 14 days after SNL by using in situ hybridization with a sense or antisense probe for H19. Arrow-

heads and arrows indicate primary sensory neurons and non-neuronal cells, respectively. Scale bars rep-

resent 100 μm. (B) H19 expression levels in different nerve regions were examined 14 days after SNL by 

using quantitative PCR (n = 5-9; *P < 0.05 and **P <0.01 by paired t-test).

strainer (pore size 60 μm, pluriSelect, Life Science,

Leipzig, Germany) to exclude debris, and the cells were

seeded on culture plate for 1 hour at 37°C under 5% CO2.

Adherent cells were collected by using 0.05% trypsin/

EDTA (Wako) and treated with Thy1.1 monoclonal anti-

body (Sigma-Aldrich, St. Louis, MO, USA) and rabbit

complement (Sigma-Aldrich) to remove fibroblasts, as

previously described21,22. The resultant Schwann cells

were confirmed by immunostaining against a specific

marker, S100 (Sigma-Aldrich).

Statistical Analysis

Values are expressed as the mean ± SEM. SPSS soft-

ware (IBM) was used for statistical analyses. Normality

of data was assessed by the Shapiro-Wilk test. If a nor-

mal distribution was assumed, the paired t-test was per-

formed. If a normal distribution was not assumed, the

Mann-Whitney U-test was performed. All tests were two-

tailed, and a P value of <0.05 was considered statistically

significant.

Results

H19 was Persistently Upregulated in DRGs Under

Neuropathic Pain Conditions

SNL was performed in rats to induce neuropathic pain.

After SNL, the paw withdrawal threshold and latency

were significantly decreased in response to mechanical

and thermal stimulus, respectively, for at least 14 days

(Fig. 1A and B), which indicated that the rats had devel-

oped mechanical allodynia and thermal hyperalgesia. Mi-

croarray analysis to identify lncRNAs potentially in-

volved in neuropathic pain revealed many lncRNA can-

didates with significant changes in expression in the L5

DRG at day 14 after SNL (Fig. 1C). Of these, we focused

on the well-characterized lncRNA H19, which showed

the greatest increase among the abundant lncRNA candi-

dates. Quantitative PCR revealed that H19 expression in

the DRG increased during the 14-day period after SNL

(Fig. 1D).

H19 was Upregulated Along the Peripheral Nerve of

Primary Sensory Neurons

To identify the cell type that expressed H19, in situ hy-

bridization for H19 was performed. In the L5 DRG 14

days after SNL, H19 expression was observed in non-

neuronal cells around nerve fibers but was much lower

in primary sensory neurons (Fig. 2A). The sense probe

for H19 yielded no signal (Fig. 2A). Therefore, we exam-

ined H19 distribution along nerve fibers. In peripheral

nerves proximal and distal to the ligated site, H19 was

markedly upregulated at day 14 after SNL (Fig. 2B).

Consistent with this, in situ hybridization showed that

H19 in non-neuronal cells was increased in proximal pe-

ripheral nerve at day 14 after SNL (Fig. 2C). In contrast,

H19 expression was unaffected in the central nerve of

DRG neurons (dorsal root) and motor nerve (ventral
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Fig.　3　H19 expression in Schwann cells after SNL.

(A) Schwann cells isolated from peripheral nerves were confirmed by S100 immunostaining and 

DAPI staining. The scale bar represents 100 μm. (B) H19 expression was examined in Schwann 

cells isolated from peripheral nerves proximal and distal to ligated sites 14 days after SNL (n = 8; 

*P < 0.05 by Mann-Whitney U-test).

root), although their basal expression levels were higher

than those in the DRG and peripheral nerve (Fig. 2B).

H19 was Upregulated in Schwann Cells Under Neu-

ropathic Pain Conditions

To determine whether H19 expression was increased in

Schwann cells under neuropathic pain conditions, we iso-

lated Schwann cells from the peripheral nerve. S100 im-

munostaining confirmed that complement-mediated cell

lysis yielded Schwann cells at a high purity (>95%; Fig.

3A). H19 expression was significantly increased in

Schwann cells isolated from peripheral nerves at day 14

after SNL (Fig. 3B).

Discussion

This study showed that H19 lncRNA was greatly and

persistently upregulated under neuropathic pain condi-

tions. Moreover, H19 was increased in peripheral nerves

proximal and distal to the injured site but not in afferent

dorsal and efferent ventral roots. Schwann cells isolated

from the peripheral nerve showed increased H19 expres-

sion after SNL, suggesting that H19 is mainly increased

in Schwann cells along the peripheral nerve of primary

sensory neurons. Therefore, H19 was increased in

Schwann cells along the peripheral nerve of primary sen-

sory neurons.

H19 expression was increased in the proximal and dis-

tal peripheral nerve regions, which indicates that such

expression was not correlated with Wallerian degenera-

tion in the distal nerve, where Schwann cells undergo

well-characterized phenotypic changes to promote nerve

regeneration. However, phenotypic changes in Schwann

cells were also induced in the proximal nerve23. After sci-

atic nerve transection, a population of Schwann cells rap-

idly expanded in the proximal nerve and underwent pro-

liferation24. Changes in expressions of Notch signaling

molecules were induced in Schwann cells in the proximal

nerve25. Therefore, H19 may be involved in the pheno-

typic change observed in Schwann cells in the proximal

and distal nerves. However, the mechanisms underlying

H19 upregulation remain unknown, although hypoxia in-

duced H19 expression in glioblastoma26. Because H19 ex-

pression was unchanged in the motor axon (ventral root),

the peripheral axon of primary sensory neurons may

contribute to upregulation of H19 expression.

H19 upregulation in Schwann cells might have a role

in neuropathic pain and/or nerve regeneration, both of

which were observed after peripheral nerve injury.

Schwann cells mediated neuropathic pain by inducing

neuroinflammation through various mechanisms4,27, in-

cluding secreting inflammatory cytokines such as IL-1β
and IL-6, which are involved in neuropathic pain5,28.

TRPA1 activation in Schwann cells mediated macrophage

infiltration, oxidative stress, and neuropathic pain in

mice after nerve injury29. Interestingly, oxidative stress in-

duced H19 expression in cholangiocarcinoma cell lines30.

Consistent with proinflammatory changes in Schwann

cells upon nerve injury, H19 activated inflammatory

processes, such as cytokine production, although the

functional significance of H19 in Schwann cells is un-

clear. H19 promoted IL-6 production by inhibiting let-7a/

7b, which represses IL-6 expression30, and IL-22 produc-

tion partly through miR-675 encoded by H1931. In a rat

model of temporal lobe epilepsy, H19 contributed to hip-

pocampal microglia and astrocyte activation, resulting in

the release of IL-1β, IL-6, and TNF-α, possibly through

STAT3 signaling32.
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Alternatively, Schwann cells may be involved in nerve

repair by means of trophic support of neurons33,34. After

nerve injury, Schwann cells de-differentiate and activate a

repair program that includes upregulation of neu-

rotrophic factors such as nerve growth factor, glial cell

line-derived neurotrophic factor, brain-derived neu-

rotrophic factor, and neurotrophin-333. These growth fac-

tors are well-characterized in the modulation of nocicep-

tive primary sensory neurons35. Schwann cells also sup-

port axon regrowth and undergo remyelination36―38.

In conclusion, we revealed a characteristic change in

lncRNA H19 expression, which was persistently upregu-

lated in Schwann cells along peripheral nerve proximal

and distal to the injury site. Functional analyses of H19

in Schwann cells will provide further insights regarding

the underlying mechanisms involved in neuropathic pain

and/or nerve regeneration.
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