Early Experience with Two Techniques of Intrascleral Intraocular Lens Fixation

Tomoyuki Kunishige and Hiroshi Takahashi

Department of Ophthalmology, Nippon Medical School, Tokyo, Japan

Background: We compared our early experience of visual outcomes, operation time, and complications for two techniques of intrascleral intraocular lens (IOL) fixation: T-fixation and flanged IOL fixation.

Methods: Data from patients who underwent scleral fixation of an IOL between October 2017 and December 2018 were analyzed retrospectively. Intraoperative time for fixation steps, corneal endothelial cell density (ECD) rate reduction, and intraoperative/postoperative complications were compared between T-fixation (Group T, n = 4) and flanged IOL fixation (Group F, n = 6).

Results: Mean patient age was 73.7 ± 13.0 years. Intraoperative time was significantly longer for Group T (27.5 ± 9.7 min) than for Group F (13.0 ± 3.8 min; P=0.03, Mann-Whitney U-test). Intraoperative complications included iris damage from the 30-G needle in 2 eyes in Group F. Postoperative complications included iris capture by the IOL in 1 eye in Group F. No incidents of postoperative retinal detachment or IOL dislocation were identified. The ECD reduction rate did not significantly differ between groups.

Conclusions: Both techniques yielded favorable surgical outcomes. Flanged IOL fixation might be superior because of its shorter intraoperative time but could initially be technically difficult because of the need to perform angled sclerotomy with a 30-G needle to avoid iris injury.

Key words: intrascleral intraocular lens fixation techniques, T-fixation technique, flanged IOL fixation

Introduction
Secondary intraocular lens (IOL) implantation is an essential technique for compromised capsular bag and zonules. Transscleral IOL suture was the most widely used technique because of its long-term safety and effectiveness. However, this technique sometimes causes 10-0 polypropylene suture erosion, breakage, and delayed IOL dislocation. A new technique that addresses these drawbacks, intrascleral fixation, has been described as a sutureless technique for IOL fixation. Various techniques for scleral-fixed IOL implantation have been described. Each has its own learning curve during early cases. Ohta et al. described T-fixation as a new intrascleral fixation technique that does not require large lamellar scleral flaps or fibrin glue. Yamane et al. developed flanged IOL fixation as a new surgical procedure that can be carried out via the conjunctiva in which the haptics of the IOL are fixed securely to the sclera, without using suture or glue.

This retrospective study compared visual outcomes and complications for early cases after treatment with T-fixation and flanged IOL fixation.

Materials and Methods

Patients and Methods
This study adhered to the tenets of the Declaration of Helsinki and was approved by the Institutional Review Board and Ethics Committee of Nippon Medical School (No. R1-06-1155). We followed the retrospective observational research information disclosure procedure (opt-out) of Nippon Medical School when obtaining informed consent from research participants. A retrospective review of consecutive patients who underwent scleral fixation of IOL was undertaken by using medical records and retained images.

The medical records of consecutive patients who underwent scleral fixation of IOL at Nippon Medical School between October 2017 and December 2018 were exam-
Two Intrascleral IOL Fixation Techniques

J Nippon Med Sch 2020; 87 (3) 139

Fig. 1 Date of scleral-fixated IOL implantation.

Table 1 Demographic characteristics

<table>
<thead>
<tr>
<th></th>
<th>Group T</th>
<th>Group F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Age ± SD</td>
<td>78.0 ± 5.9</td>
<td>73.7 ± 13.0</td>
</tr>
<tr>
<td>Male</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Female</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2 Indications for surgery

<table>
<thead>
<tr>
<th></th>
<th>Group T</th>
<th>Group F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dislocated IOL</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Subluxated cataract</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Aphakia</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Surgical Procedures

In Group T, conjunctival peritomy was done at the 2 o'clock and 8 o'clock positions under retrobulbar anesthesia. Two T-shaped incisions were made, 2.0 mm from the limbus, exactly 180° apart diagonally, and an infusion cannula or anterior chamber maintainer was inserted. Sclerotomy was performed parallel to the iris at the T-shaped incision with a 25-gauge knife, and a scleral tunnel was made parallel to the limbus at the branch point of the T-shaped incision. A 3.0-mm sclerocorneal tunnel incision was created at the 10 to 12 o'clock position, through which a 3-piece IOL (NX-70 Santen Pharmaceutical Co., Osaka, Japan) was implanted with an injector. The tip of the haptic was then grasped with 25-G forceps and pulled through the sclerotomy. After the trailing haptic was inserted into the anterior chamber, the haptic tip was grasped with 25-G forceps and pulled through the other sclerotomy. The haptic was subsequently inserted into the limbus-parallel scleral tunnel. The sclera tunnel and conjunctival peritomy were sutured with 10-0 Nylon or 8-0 Vicryl.

The technique required to make a sclerotomy with a 25-G knife and use forceps to externalize the IOL haptic is relatively easy. However, substantial time is required to dissect the conjunctiva, make the scleral tunnel, insert the haptics into the scleral tunnel, and suture the conjunctival peritomy.

In Group F, an infusion cannula or anterior chamber maintainer was inserted under retrobulbar anesthesia. An angled sclerotomy was made through the conjunctiva with a 30-G thin-wall needle (TSK ultra-thin-wall needle; Tochigi Seiko, Tochigi, Japan) at 2 mm from the limbus. A 3.0-mm sclerocorneal tunnel incision was created at the 12 to 2 o'clock position, through which a 3-piece IOL (NX-70 Santen Pharmaceutical Co., Osaka, Japan) was implanted with an injector. The leading haptic was threaded into the lumen of the needle by using forceps. The trailing haptic was inserted into the lumen of the second needle. Both haptics were externalized onto the conjunctiva with a flanged IOL fixation. The ends of the haptics were cauterized with an ophthalmic cautery device (Accu-Temp Cautery; Beaver Visitec, Waltham, MA) to make a flange. The flange of the haptics was pushed back and fixed into the scleral tunnels.

A 30-G needle was used to externalize the haptics of the IOL. The technique without a scleral flap is simpler and requires no sutures. However, making an angled sclerotomy through the conjunctiva with a 30-G needle, to avoid iris injury, and introducing the haptic into the 30-G needle in the anterior chamber is difficult.

Statistical Analysis

The ECD reduction rate and intraoperative time for intrascleral IOL fixation techniques in both groups were compared with the Mann-Whitney U-test. A P value of <0.05 was considered to indicate statistical significance.

Results

Data were analyzed from 10 eyes of 10 consecutive patients: intrascleral IOL fixation using T-fixation technique in 4 eyes (Group T) and flanged IOL fixation in 6 eyes (Group F) (Fig. 1). Patient age was 53 to 87 years. Group T comprised 1 man and 3 women and Group F comprised 6 men (Table 1).

Table 2 shows the underlying pathologies: dislocated
posterior chamber IOL in 1 case, subluxated cataract in 1, and aphakic eyes in 2 in Group T, and dislocated posterior chamber IOL in 2 cases, subluxated cataract in 1, and aphakic eyes in 3 in Group F. Mean follow-up was 12.5 ± 7.9 months in Group T and 14.1 ± 2.1 months in Group F. Four eyes underwent 25-G pars plana vitrectomy for indications such as dislocated IOL and subluxated cataract. Intraoperative complications included iris damage from the 30-G needle in 2 eyes (Group F; Fig. 2). Postoperative complications included iris capture by the IOL in 1 eye (Group F; Fig. 3). The position of the IOL was changed to the back of the iris with block sutures, which prevent forward movement of the IOL, by suturing with 10-0 polypropylene between the iris and IOL. No postoperative retinal detachment or IOL dislocation developed.

Mean postoperative best-corrected visual acuity (BCVA) changed from −0.079 to 0.046 logMAR at 3 months, after excluding 1 case with a final BCVA of 1.69 logMAR caused by proliferative diabetic retinopathy. The ECD reduction rate did not significantly differ between the 2 groups (Mann-Whitney U-test; Fig. 4). Next, we analyzed surgical videos from our database and determined the intraoperative times of steps related to intrascleral IOL fixation in both groups. Mean intraoperative times for intrascleral IOL fixation techniques were 27.5 ± 9.7 min (Group T) and 13.0 ± 3.8 min (Group F). Intraoperative time was significantly shorter for Group F than for Group T (P = 0.03, Mann-Whitney U-test) (Fig. 5).

Discussion

Ohta developed an intrascleral fixation technique that does not require large lamellar scleral flaps or fibrin glue\(^8,9\). Yamane developed a surgical procedure that can be carried out via the conjunctiva, in which the haptics of the IOL are securely fixed to the sclera without using sutures or glue\(^10,11\). The current study was done to compare T-fixation and flanged IOL fixation in relation to intraoperative time (from IOL insertion to fixation) and complications in our initial cases. No IOL tilt or decentration was seen in any patient during follow-up. Both techniques yielded favorable surgical outcomes.

Intraoperative time was significantly shorter in Group F than in Group T, reflecting the fewer surgical proce-
Two Intrascleral IOL Fixation Techniques

Fig. 5 Mean intraoperative time from IOL insertion to fixation. Intraoperative time for steps related to intrascleral IOL fixation for T-fixation (Group T) and flanged IOL fixation (Group F). Data were analyzed with the Mann-Whitney U-test.

The authors declare no conflicts of interest.

References

(Received, October 23, 2019)
(Accepted, November 22, 2019)
(J-STAGE Advance Publication, December 27, 2019)