Identification of Novel C-Terminally Truncated Estrogen Receptor β Variant Transcripts and Their Distribution in Humans

Hirotaka Ishii, Yujiro Hattori and Hitoshi Ozawa

Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan

Background: The nuclear receptor genes, including estrogen receptor β (ERβ), contain non-conventional internal and terminal exons, and alternative choice of the exons yields multiple mRNA and protein variants with unique structures and functions. However, the genomic structure of the intronic and 3’-downstream regions of the human ERβ gene and the presence of novel ERβ variants with non-conventional sequences have not been re-examined in about 20 years. Therefore, we attempted to re-characterize the structure of the human ERβ gene and identify novel non-conventional exons and distinct splice variants.

Methods: Rapid amplification of cDNA 3’-end and RT-PCR cloning were used to isolate human ERβ mRNA variants from the testis. The identified cDNA sequences were mapped on the human genome assembly. Expression profiles of the variants were assessed by RT-PCR analysis.

Results: We cloned multiple ERβ mRNA variants with novel nucleotide sequences from the testis and identified several alternative splice sites, 3’-elongation of conventional coding exons, and novel terminal exons in the human ERβ gene. The variants encode C-terminally truncated ERβ proteins termed ERβ6, ERβ7, ERβEx. 4, and ERβEx. 6. Furthermore, we identified exon 7-defective forms of ERβ2/βcx, ERβ4, ERβ6, and ERβ7. Subsequently, we noted distinct expression patterns of the variants in human peripheral organs and brain subregions.

Conclusion: This study clarified complicated genomic organization and splicing patterns of the human ERβ gene that contribute to the distinct heterogeneity of human ERβ mRNAs and proteins.

Key words: alternative splicing, ESR2, estrogen receptor β, splice variants

Introduction

Pleiotropic hormones, estrogens, have powerful effects on diverse physiological events in reproductive and non-reproductive organs and are involved in pathophysiological processes such as breast cancer, ischemic stroke, and Alzheimer disease. Estrogen signaling is mediated mainly via activation of nuclear estrogen receptors (ERs) and estrogen receptor α and β (gene symbols: ESR1 and ESR2, respectively).

The ER genes encode ligand-induced nuclear transcription factors that contain distinct functional domains: the N-terminal transactivation function, DNA-binding, hinge, and ligand-binding C-terminal transactivation function domains. The genes consist of several 5’-untranslated exons and eight conventional coding exons. Furthermore, the gene transcripts are subject to complicated alternative splicing. Since the discovery of the full-length ERβ (ERβ1), in 1996, various exon-skipping ERβ variants have been identified. In addition, the human ERβ gene contains multiple non-conventional terminal exons, and alternative choice of the terminal exons generate mRNAs encoding C-terminally truncated ERβ variants. Although the variants themselves lack transcriptional transactivation abilities, they were reported to heterodimerize with full-length ERα and/or ERβ proteins and to modulate trans-
C-Terminally Truncated ERβ Variants

Table 1 Oligonucleotide primers used for 3'-RACE and RT-PCR experiments

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Gene</th>
<th>Exon(s)</th>
<th>Direction</th>
<th>Oligonucleotide sequence (5' to 3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>3'-RACE</td>
<td>Universal</td>
<td>Reverse</td>
<td>5'-GCGTCAACGATACGCTAACGCCATGACAGTG (T)3' to 5'</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse</td>
<td>5'-GCTGTCACGATACGCTAACGCCATGACAGTG-3'</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse</td>
<td>5'-GCCTACGTAAACGCCATGACAGTG-3'</td>
<td></td>
</tr>
<tr>
<td>ESR2</td>
<td>4</td>
<td>Forward</td>
<td>5'-AGAGATGTTGGTG ACCCCCTCTTGTG-3'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Reverse</td>
<td>5'-TGATCAGCCGCCCAGTGTC-3'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Forward</td>
<td>5'-GGTTAAATGATGGGCGTGTG-3'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Forward</td>
<td>5'-GGATGAGGGGAAATGCGTAG-3'</td>
<td></td>
</tr>
<tr>
<td>RT-PCR</td>
<td>ESR2</td>
<td>6</td>
<td>Forward</td>
<td>5'-GATGAGGGGAAATGCTAGA-3'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Reverse</td>
<td>5'-TGCAGGTGTGACCCTTGAGT-3'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Forward</td>
<td>5'-GATGAGGGGAAATGCTAGA-3'</td>
</tr>
<tr>
<td></td>
<td>β2</td>
<td>Reverse</td>
<td>5'-TGTCTTAGCCACCAGGATTTG-3'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4, 5</td>
<td>Forward</td>
<td>5'-AAGAAGATT ACCCCCTTGTG-3'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>β3</td>
<td>Reverse</td>
<td>5'-TGGCTTCCCCCATCAAAC-3'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4, 5</td>
<td>Forward</td>
<td>5'-AAGAAGATT ACCCCCTTGTG-3'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>β4</td>
<td>Reverse</td>
<td>5'-CAAACTTTCATGCCCACA-3'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4, 5</td>
<td>Forward</td>
<td>5'-AAGAAGATT ACCCCCTTGTG-3'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>β5</td>
<td>Reverse</td>
<td>5'-CACATAATCCTCCACCAAC-3'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4, 5</td>
<td>Forward</td>
<td>5'-AAGAAGATT ACCCCCTTGTG-3'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>β6</td>
<td>Reverse</td>
<td>5'-AGGAAGGGAAATGCGTAG-3'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4, 5</td>
<td>Forward</td>
<td>5'-AGGAAGGGAAATGCGTAG-3'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>β7</td>
<td>Reverse</td>
<td>5'-AGGAAGGGAAATGCGTAG-3'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Forward</td>
<td>5'-ACGAAATGGGAAATTGCGTAG-3'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4L</td>
<td>Reverse</td>
<td>5'-GCCAGTCCAAAAGAAACC-3'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4, 5</td>
<td>Forward</td>
<td>5'-AAGAAGATT ACCCCCTTGTG-3'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6L</td>
<td>Reverse</td>
<td>5'-CGAAGTCCAAAAGAAACC-3'</td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td>1</td>
<td>Forward</td>
<td>5'-TTCGACAGTCAGCCGATCTTGTG-3'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Reverse</td>
<td>5'-CCGACGATCCGCCCACTTTG-3'</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

activation of full-length variants. Several studies have reported that these C-terminally truncated ERβ variants are associated with diseases such as breast cancer, lung cancer, prostate cancer, brain tumor, and cerebral apoplexy.

Recently, multiple C-terminally truncated ERα variants have been characterized in humans, mice, and rats. They were generated by alternative choice of novel internal and terminal exons between conventional coding exons and exhibited distinct transcriptional transactivation in transfected cells. These results suggest that there are novel C-terminally truncated ERβ variants generated from novel intronic exons with unique structures and functions in humans. However, the genomic structure of the 3'-region of the human ERβ gene and the presence of novel C-terminally truncated ERβ variants have not been re-examined for about 20 years. Therefore, we decided to re-characterize the structure of the human ERβ gene and identify other human C-terminally truncated ERβ splice variants.

Materials and Methods

Rapid Amplification of cDNA 3'-End (3'-RACE) and RT-PCR

Human total RNAs were purchased from Thermo Fisher Scientific (Waltham, MA, USA) and Takara-Clontech (Shiga, Japan). Information on the total RNAs is presented in our previous report. 3'-RACE was performed as described in our previous studies. Human testis total RNA (TaKaRa-Clontech) was reverse-transcribed by using an adaptor-oligo(dT) primer. Human ERβ 3'-end fragments were amplified by nested PCR using LA Taq polymerase (TaKaRa-Clontech). The cDNAs for RT-PCR were synthesized as described elsewhere. The cDNAs (25 ng/tube) were amplified in three steps by using Blend Taq polymerase (Toyobo, Osaka, Japan), as described in our previous studies. Oligonucleotide primers used in the 3'-RACE and RT-PCR experiments were purchased from Nihon Gene Research Laboratories (Sendai, Japan) and are shown in Table 1. Electrophoresis in agarose gels was used to separate the 3'-RACE and RT-PCR products. The products were stained with ethidium bromide, and the gel images were...
The genomic organization of the human ERβ gene is shown schematically. The gene is mapped to 14q23.2-q23.3 in human chromosome 14. The open and filled boxes indicate conventional exons and non-conventional terminal sequences, respectively. The bent arrow, dotted lines, and asterisks symbolize a transcriptional start site, alternative splicing sites, and stop codons, respectively. The inward-facing arrowheads show the locations of primer pairs used for RT-PCR.

Results
Identification of Novel ERβ mRNA Variants
Unlike the rodent ERβ genes, the human ERβ gene is abundantly expressed in the testis. Therefore, we used 3′-RACE to clone human ERβ variant mRNAs, including novel nucleotide sequences, in the testis. The 3′-RACE fragments were amplified by nested PCR by using forward gene-specific and reverse universal primers and cloned into pGEM-T-Easy vectors. We sequenced the amplicons and identified multiple clones containing novel nucleotide sequences. We then mapped them on the human genome assembly (GRCh38/hg38 human assembly) with the BLAT alignment program and identified several alternative splice sites, 3′-elongation of conventional coding exons, and novel terminal exons. Figure 1 shows the genomic structure of the human ERβ gene schematically. We labelled exons containing novel nucleotide sequences as exons 4L, 6L, β6, and β7 and named the variants containing the respective sequences as ERβEx. 4L, ERβEx. 6L, ERβ6, and ERβ7. Their nucleotide sequences are shown in detail in Figure 2. Exons β2, β4, and β6 were generated from alternative choice of splice acceptor sites. Exons 4L and 6L were produced by 3′-elongation of exons 4 and 6, respectively. Exon β7 is a novel non-conventional terminal exon located downstream of exon 8 and contains a putative polyadenylation signal (AATAAA).

Expression and Splicing Patterns of Novel ERβ mRNA Variants in the Testis
Expression and splicing profiles of the C-terminally truncated ERβ variant mRNAs in the testis were analyzed by using RT-PCR with forward primers designed in conventional coding exons and reverse primers in novel terminal sequences (Fig. 3). The locations of the primer pairs are shown in Figure 1. We confirmed expression and splicing profiles of the novel variants in the testis and further observed the presence of exon 7-defective forms in the ERβ2/βcx, ERβ4, ERβ6, and ERβ7 amplicons (named as ERβ2δ7, ERβ4δ7, ERβ6δ7, and ERβ7δ7, respectively).

The open reading frames of the variants were confirmed by RT-PCR cloning and DNA sequencing analysis. The mRNA and potentially encoded protein structures of the ERβ variants are shown in Figure 4. The nucleotide
sequences of human C-terminally truncated ERβ variants were registered to the DDBJ/EMBL/GenBank database. The accession numbers are LC122965 for ERβ2δ7, LC122966 for ERβ4δ7, LC122967 for ERβ6, LC122968 for ERβ6δ7, LC122969 for ERβ7, LC122970 for ERβ7δ7, LC122971 for ERβEx. 4L, and LC122972 for ERβEx. 6L. The potentially encoded proteins contained the N-terminal transactivation, DNA-binding, and hinge domains but lacked the 1/3-2/3 C-terminal parts of the ligand-binding domain. Only ERβ1 mRNA encoded the complete ligand-binding/C-terminal transactivation domain.
Distribution of Novel ERβ mRNA Variant Transcripts

We analyzed the distribution of ERβ variant mRNAs in human peripheral organs and brain subregions by comprehensive use of RT-PCR (Fig. 5). The ERβ1, ERβ2/βcx, and ERβ5 mRNAs were detected after relatively small numbers of PCR amplification cycles (33 and 34 cycles) and were distributed in a broad range of peripheral organs and brain subregions. The ERβ4, ERβ6, ERβ7, ERβEx. 4L, and ERβEx. 6L products were amplified by using a large number of PCR cycles (38 cycles) and observed in a few organs. The ERβ3 and exon 7-skipping variant amplicons were detected only in the testis.

Discussion

Nuclear receptor pre-mRNAs are subject to complicated splicing, which contributes to the heterogeneity of mRNAs and encoded proteins. In particular, alternative splicing in the regions encoding C-termini results in variant proteins lacking most or one part of ligand-binding domains and instead possessing variant-specific C-terminal sequences. Nuclear receptor genes including ERβ contain non-conventional terminal exons, and alternative choice of exons yields mRNAs encoding C-terminally truncated variants.

The pioneering studies of Ogawa et al. and Moore et al. described the presence of several non-conventional terminal sequences and C-terminally truncated ERβ variants (ERβ2/βcx, ERβ3, ERβ4, and ERβ5) in humans. In the current study, we reassessed the structure of the human ERβ gene and identified novel non-conventional exons, C-terminally truncated ERβ variants (ERβ6, ERβ7, ERβEx. 4L, and ERβEx. 6L), and exon 7-skipping variant forms (ERβ2δ7, ERβ4δ7, ERβ6δ7, and ERβ7δ7). The ERβ 2/βcx, ERβ4, and ERβ6 mRNAs are generated by alterna-
C-Terminally Truncated ERβ Variants

Fig. 4 mRNA and protein structures of human C-terminally truncated ERβ variants
The structures of human C-terminally truncated ERβ variant mRNAs (left) and their potentially encoded proteins (right) are represented schematically. The “AUG”s and asterisks in mRNA panels indicate translational initiation and termination sites, respectively.

tive choice of splice acceptor sites in exon β6. The novel sequences of the ERβEx. 4 and ERβEx. 6 variants correspond to the 3'-elongated intronic regions of exons 4 and 6, respectively. In particular, the generation pattern of the ERβEx. 4 variant is similar to those of human, mouse, and rat CTERP-1 variants32-35,42. Although the human, mouse, and rat ERα genes contain non-conventional internal and terminal exons in intronic regions between coding exons32-35, the non-conventional sequences in the human ERβ gene involve 3'-elongation of conventional exons or are located downstream of a conventional terminal exon (exon 8). Moore et al.19 reported that the ERβ5
Fig. 5 Distribution of human C-terminally truncated ERβ variant mRNAs in human organs
Expressions of human ERβ variant transcripts were analyzed in a wide variety of human organs and brain subregions by using RT-PCR. The number of PCR amplification cycles used is indicated on the right bottom of each panel. Testicular cDNA and water (“No cDNA”) were used as positive and negative controls, respectively.

The human ERβ1, ERβ2/βcx, and ERβ5 mRNAs were widely distributed and observed after a relatively small number of PCR amplification cycles (33-34 cycles), whereas the other variants exhibited limited expression and required a large number of PCR cycles for detection. The Δexon 7 variants were barely detectable, except in the testis. Thus, our RT-PCR results suggest that the ERβ1, ERβ2/βcx, and ERβ5 variants are the predominant isoforms in normal human organs. The human testis exhibited abundant and complicated expression profiles of the ERβ variants. Recent discovery of the well validated antibody against human and rodent ERβ proteins indicates that the abundant expression of the ERβ gene in the adult testis is specific to humans. Thus, the expression profiles of human ERβ variants imply human-specific modulatory roles in testicular estrogen-signaling pathways.

We deduced that the expression levels of the newly identified variants in normal organs except the testis were lower than those of the ERβ1, ERβ2/βcx, and ERβ5 variants. Thus, the physiological significance of these variants remains unclear. However, an association of the human ERβ variants with clinical and pathological conditions has been suggested. Therefore, future studies should examine the precise roles of the human C-terminally truncated ERβ variants.

In conclusion, this is the first study to show the genomic organization of the human ERβ gene and characterize novel structurally diverse ERβ variants that naturally occur in normal human tissues. Although the physiological and pathophysiological relevance of the C-terminally truncated ERβ variants is unknown, our find-
ings provide useful and fundamental information for further research on ER variants.

Acknowledgments: This work was supported by JSPS KAKENHI Grants-in-Aid (Grant #: 17K16171, 18K06860, and 18K06879).

Conflict of Interest: None declared

References

(Received, November 7, 2019)
(Accepted, February 26, 2020)
(J-STAGE Advance Publication, March 31, 2020)