The Roles of Dominance of the Nitric Oxide Fractions Nitrate and Nitrite in the Epilepsy-Prone EL Mouse Brain

Yasuhiko Kawakami1,2, Yoshiya L. Murashima3, Mitsutoshi Tsukimoto4, Hajime Okada1, Chiharu Miyatake1, Atsushi Takagi1, Juri Ogawa1 and Yasuhiko Itoh1

1Department of Pediatrics, Nippon Medical School, Tokyo, Japan
2Department of Pediatrics, Nippon Medical School Musashi Kosugi Hospital, Kanagawa, Japan
3Graduate School of Human Health Science, Tokyo Metropolitan University, Tokyo, Japan
4Department of Radiation Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan

Background: Oxidative stress is thought to be closely related to epileptogenesis. We have previously reported that nitric oxide (NO) levels are higher in epilepsy-prone EL mice between the ages of 3 and 8 weeks than in control mice. However, NO is divided into two fractions, nitrite (NO2) and nitrate (NO3), which appear to play different roles in epileptogenesis.

Methods: NO2 and NO3 levels were measured, in EL mice and the control mice, in the parietal cortex, which is thought to be the primary epileptogenetic center in EL mice, and measured in the hippocampus, which is thought to be the secondary center.

Results: NO3 levels in the hippocampus and parietal cortex of the immature EL mice (3 to 8 weeks of age) were significantly higher than those in the control mice; NO2 levels were significantly higher in the EL mice throughout the study period. The NO3 levels were significantly higher than the NO2 levels in the immature EL mice, but after the onset of ictogenesis at 10 weeks of age, the relative levels of the two fractions reversed.

Conclusion: The reversal of the NO fraction distribution at the onset of seizures that we observed may be related to the developmental process of seizure susceptibility in the neural network of EL mice.

Key words: nitric oxide (NO), nitrite (NO2), nitrate (NO3), EL mice, seizure susceptibility

Introduction

Oxidative stress is closely related to the pathogenesis of epilepsy during ictogenesis in human cerebrospinal fluid (CSF). However, the role of up-regulated antioxidative agents in the central nervous system of patients with epilepsy still remains unknown. Experimental methods have demonstrated hippocampal antioxidant ability in mutant animal models of epilepsy (EL mice). The EL mouse is an inbred, epileptic mutant model of secondarily generalized seizures. Several lines of evidence indicate that in EL mice, the parietal cortex is the seizure initiation site, while the hippocampus is responsible for seizure generalization. The developmental formation of the focus complex, which consists mainly of the parietal cortex and the hippocampus, has been hypothesized to be the key to epileptogenesis in EL mice. Nitric oxide (NO) has been identified as a source of free radical scavengers; NO is rapidly metabolized by oxidation to nitrite (NO2) and nitrate (NO3). Because NO, reportedly had a potent neuroprotective effect, we decided to measure NO fraction concentrations in an attempt to solve how the redox condition was during the onset of ictogenesis in EL mice.

Materials and Methods

Mutant epilepsy-prone EL mice manifesting no seizures before 5 weeks of age were used, with ddY mice serving as controls.
as controls (The EL mouse was established in Japan as a genetically predisposed epilepsy model from the hydrocephalic mutant of the ddY strain). The brain redox was studied.

Five EL mice and 5 control ddY mice were sacrificed by decapitation, and the brains were removed and placed on ice. The parietal cortex and the hippocampus were excised and weighed (8-20 mg). To obtain brain tissue homogenates, 20 mM Tris-HCl (pH 8.0) was added.

An NO₂/NO₃ Assay Kit-CII (Dojindo, Kumamoto, Japan) was used to determine NO levels. Briefly, the Griess reaction was used to determine NO₂ levels spectrophotometrically at 540 nm. For NO₃ reduction, samples were incubated in the presence of nitrate reductase, NADPH and FAD. Since all NO fractions in our samples were converted to NO₂, their levels were determined spectrophotometrically to serve as total NO (NO₂+NO₃) levels. The Bradford assay was used to measure total protein concentrations in each sample with a Bio-Rad reagent (Bio-Rad, Richmond, California, United States).

Data are presented as mean ± standard error of the mean, and two way ANOVA was used to determine the statistical significance of differences in each parameter in mice of the same age; a level of p < 0.01 was considered significant.

Results

1. NO₃ Concentrations in the EL and ddY Mice (Fig. 1, 2)

NO₃ concentrations in the hippocampus and parietal cortex were significantly higher in the EL mice between 3 and 8 weeks of age than they were in the ddY mice at the same age. Between 10 and 25 weeks of age, however, the levels were almost the same in both mouse groups.

2. NO₂ Concentrations in the EL and ddY Mice (Fig. 3, 4)

NO₂ concentrations in the hippocampus and parietal cortex were significantly higher in the EL mice between 3 and 25 weeks of age than in the ddY mice.

3. Comparison of NO₃ and NO₂ Concentrations in the EL Mice (Fig. 5, 6)

When the EL mice were between 3 and 5 weeks of age, the NO₃ concentrations in the hippocampus and parietal cortex were significantly higher than those of NO₂, but the relative levels of the two fractions reversed when the mice were aged between 10 and 25 weeks; the levels were almost the same at 8 weeks of age.

4. Comparison of NO₃ and NO₂ Concentrations in the ddY Mice (Fig. 1~4)

The concentrations of the two fractions were relatively stable throughout the time course, with only slight fluctuations.

Discussion

NO is generated by NO synthetase (NOS) in most cells
NO in the epilepsy-prone mouse brain

of the body. It is regulated by its rapid oxidation to NO2 and then, in the presence of oxyhemoglobin, to NO3. In the presence of carboxic anhydrase, vitamin C, or polyphenols, NO2 is reduced to NO, thus systemizing the nitrogen cycle in the body.12

We found that NO3 and NO2 levels were almost constant during the growth process in the ddY mouse brain, however, in the EL mouse brain, NO3 predominated over NO2 in the early weeks of age (i.e. during the process of epileptogenesis acquisition), that the difference in the levels of the two fractions shrank around the time of seizure onset, and that NO2 dominated after seizure onset. This seems very interesting and important. NO circulates in the living body and is not localized in the brain. However, it has been reported that it is possible various fac-
tors related to acquisition of epileptogenicity of EL mice containing NO fraction are regulated and act locally in the brain and as in this report, the present data were obtained using local homogenate at a local site in the brain. NO is supposed to act as an oxidative agent, NO, on the other hand, is supposed to act as a reducing agent. Considering the properties of free radicals, while generality is not lost in this situation, it is recognized that oxidizing agents are neurodestructive and reducing agents are neuroprotective. So it seems reasonable to think that in the EL mouse brain NO exerts a relatively harmful or proconvulsant effect before 10 weeks of age, while NO plays a relatively neuroprotective or proconvulsant role after 10 weeks of age.

It has been reported that epileptogenesis in EL mice is caused either by antioxidant protection or excessive free radical formation, especially in the hippocampus. In seizure susceptibility regulation, some studies have indicated that the effect of total NO is anticonvulsant and that the hippocampus and the parietal cortex. It should be noted, however, that the present study is only a preliminary and observational one. It seems to be very interesting that the balance of NO (oxidant effect) and NO (antioxidant effect) is changed according to the time course before and after the acquisition of ictogenesis.

Some factors may delicately regulate the dominance of NO and NO in the brain region. Further elucidation of the mechanism is awaited in the future.

Conflict of Interest: The authors have no conflicts of Interest to declare.

References

