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Background: Ventilator weaning protocols are commonly implemented for patients receiving mechani-

cal ventilation. However, despite such protocols, the rate of extubation failure remains high. This study

analyzed the usefulness and accuracy of machine learning in predicting extubation success.

Methods: We retrospectively evaluated data from patients who underwent intubation for respiratory

failure and received mechanical ventilation in an intensive care unit (ICU). Information on 57 features,

including patient demographics, vital signs, laboratory data, and ventilator data, were extracted. Extu-

bation failure was defined as re-intubation within 72 hours of extubation. For supervised learning, data

were labeled as intubation-required or not. We used three learning algorithms (Random Forest,

XGBoost, and LightGBM) to predict successful extubation. We also analyzed important features and

evaluated the area under curve (AUC) and prediction metrics.

Results: Overall, 13 of the 117 included patients required re-intubation. LightGBM had the highest AUC

(0.950), followed by XGBoost (0.946) and Random Forest (0.930). The accuracy, precision, and recall per-

formance were 0.897, 0.910, and 0.909 for Random Forest; 0.910, 0.912, and 0.931 for XGBoost; and

0.927, 0.915, and 0.960 for LightGBM, respectively. The most important feature was duration of me-

chanical ventilation, followed by fraction of inspired oxygen, positive end-expiratory pressure, maxi-

mum and mean airway pressures, and Glasgow Coma Scale.

Conclusions: Machine learning predicted successful extubation of ICU patients on mechanical ventila-

tion. LightGBM had the best overall performance. Duration of mechanical ventilation was the most im-

portant feature in all models. (J Nippon Med Sch 2021; 88: 408―417)
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Introduction

Mechanical ventilation is a life-saving modality for respi-

ratory support of critically ill patients. In the United

States, approximately 800,000 patients receive mechanical

ventilation annually1. Among patients receiving mechani-

cal ventilation, weaning from ventilator support is one of

the most important challenges in the intensive care unit

(ICU). Extubation failure significantly increases the risk

for adverse clinical events, length of ICU and hospital

stay, and mortality2―4. Unsuccessfully extubated patients

are approximately seven times as likely to die as success-

fully extubated patients5. Therefore, appropriate timing of

extubation is an important issue for physicians6,7.

Many ventilator weaning protocols have been devel-

oped and verified to improve extubation success rates8―19.

Using these protocols, physicians extubate patients with

a higher probability for successful weaning, as indicated

by clinical variables such as consciousness, vital signs, ar-
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terial blood gas findings, and ventilator settings. Com-

pared with standard care, use of weaning protocols can

reduce the duration of mechanical ventilation by 25%,

weaning duration by 78%, and length of ICU stay by

10%20. However, even when clinical practice for extuba-

tion adheres to the American Thoracic Surgery weaning

protocol, extubation failure occurs in 10% to 15% of cases

in the United States21. The incidence of extubation failure

has remained high despite the use of weaning protocols,

and no significant improvement has been achieved in the

last few decades. Accordingly, a new model is needed to

improve the prediction accuracy.

Machine learning is a field of computational science

that incorporates numerous factors to create systems that

can learn from data in their environment and make pre-

dictions and take actions when confronted with a new

situation. Machine learning might improve prediction of

extubation success. Although numerous studies have in-

vestigated mechanical ventilation, few have used ma-

chine learning to predict the success of weaning from

ventilatory support22―24. Thus, this study analyzed the per-

formance and accuracy of machine learning to predict ex-

tubation success.

Materials and Methods

Study Population

This study was approved by the Ethics Committee of

the Nippon Medical School Hospital (30-06-949). The

need for informed consent was waived. This single-

center retrospective observational study was conducted

from January 1, 2015 to December 31, 2018. Patients diag-

nosed with respiratory failure on admission, underwent

intubation, and remained on mechanical ventilation for

longer than 24 hours in the ICU were included in this

study. Respiratory failure was defined as satisfying one

of the following criteria25,26: hypoxia with a partial pres-

sure of arterial oxygen (PaO2) to a fraction of inspired

oxygen (FiO2; P/F) ratio of �300 mm Hg; peripheral

oxygen saturation (SpO2) of �90% when breathing room

air; respiratory acidosis with a pH �7.32 and a partial

pressure of arterial carbon dioxide (PaCO2) �45 mm Hg;

and tachypnea with a respiratory rate of �30/min. The

exclusion criteria were as follows: age <18 years, altered

consciousness as the only indication for intubation, intu-

bation for emergency surgery, death in facility, transpor-

tation to other hospitals with mechanical ventilation, and

tracheostomy without attempted extubation.

Weaning Protocol

The need for extubation was determined by physicians

using the weaning protocol developed by the joint com-

mittee of three academic societies in Japan, namely, the

Japanese Society of Intensive Care Medicine, the Japanese

Society of Respiratory Care Medicine, and the Japan

Academy of Critical Care Nursing27. The protocol is

shown in Figure 1. Briefly, spontaneous awakening trials

(SATs) are usually performed when patients are stable. A

successful SAT is defined as absence of agitation and

tachypnea after discontinuation of sedative agents. Then,

spontaneous breathing trials (SBTs) are performed. Suc-

cessful SBT is defined as meeting the following condi-

tions under T-piece ventilation or pressure support venti-

lation set to FiO2 �0.5 and a positive end-expiratory

pressure (PEEP) �5 cm H2O from 30 minutes to 2 hours:

(1) a respiratory rate of �30/min; (2) SpO2 of �94% or

PaO2 of �70 mm Hg; (3) a heart rate of �140/min and

no signs or symptoms of arrhythmia or myocardial ische-

mia; (4) no hypertensive urgency or emergency; and (5)

no clinical signs or symptoms of respiratory distress (use

of accessory muscles, seesaw breathing, severe dyspnea,

anxiety, agitation). When SBT was successful, physicians

performed extubation.

Data Collection

Data were collected from the electronic health record

(Mirrel, Fukuda Denshi Co., Ltd., Tokyo, Japan). All data

were anonymized and included patient demographics;

vital signs per minute; laboratory values; ventilator data

(per minute); diagnosis; clinical severity scores at ICU

admission, such as Acute Physiology and Chronic Health

Evaluation (APACHE) II score, Sequential Organ Failure

Assessment (SOFA) score, and simplified acute physiol-

ogy score (SAPS) II; and attending physician’s notes.

The following variables were analyzed: (1) demo-

graphic factors, including age, sex, height, body weight,

and body mass index; (2) vital signs and other clinical

factors per minute (systolic, diastolic, and mean blood

pressure, heart rate, respiratory rate, body temperature

[using a Foley catheter], SpO2, end-tidal carbon dioxide,

the number of premature ventricular contraction) or at a

predetermined interval (pupil diameters and Glasgow

Coma Scale [GCS]); (3) arterial blood gas findings, in-

cluding PaCO2, PaO2, HCO3−, base excess, sodium

(Na+), potassium (K+), chloride (Cl−), calcium (Ca2+),

anion gap, lactate, arterial oxygen saturation, carboxyhe-

moglobin, methemoglobin, pH, P/F ratio, and AaDO2;

(4) laboratory results, including white blood cell count,

red blood cell count, hematocrit, platelet count,

prothrombin time-international normalized ratio, acti-

vated partial thromboplastin time (APTT), and levels of
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Fig. 1 Ventilator weaning protocols developed by a joint committee in Japan
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Fig. 2 Data labeling for (a) patients who were successfully and (b) unsuccessfully extubated.

Patients who were intubated because of respiratory failure required intubation within 2 hours af-

ter intubation. (a) Patients who were successfully extubated did not require intubation 3 hours be-

fore extubation. (b) Patients who were unsuccessfully extubated required intubation 3 hours be-

fore extubation.

hemoglobin, fibrinogen, blood urea nitrogen (BUN), cre-

atinine, total protein (TP), albumin, total bilirubin, aspar-

tate transaminase (AST), alanine aminotransferase (ALT),

lactic acid dehydrogenase (LDH), creatine phosphokinase

(CPK), amylase, and C-reactive protein (CRP); (5) ventila-

tor data including FiO2, maximum and mean airway

pressure, PEEP, tidal volume, minute ventilation, and du-

ration of mechanical ventilation.

Handling of Missing Values

Although vital signs were measured every minute,

blood samples were measured, and consciousness was

evaluated, at predetermined intervals or in relation to the

patient’s condition. Some patients had missing values.

Consciousness level was imputed by using the same val-

ues until the next observation. Arterial blood gas find-

ings were imputed by using the same values as an hour

before and after measurement.

Labeling

Extubation failure was defined as re-intubation within

72 hours after extubation. When high-flow nasal oxygen

or noninvasive positive-pressure ventilation was required

after extubation, it was still defined as successful extuba-

tion if re-intubation was not required within 72 hours af-

ter extubation28,29. For patients who require mechanical

ventilation, improvement in respiratory failure and

weaning from ventilatory support takes several days. Pa-

tients were assumed to have required intubation and me-

chanical ventilation when they were intubated because of

respiratory failure and required mechanical ventilation

within 2 hours after intubation. They were considered as

unsuccessfully extubated if they had required mechanical

ventilation during the 3 hours before extubation and as

successfully extubated if they had not required mechani-

cal ventilation during the 3 hours before extubation (Fig.

2).

Statistical Analyses

Age and clinical severity score are reported as median

and interquartile range. A receiver operating characteris-

tic curve was drawn, and the area under the curve

(AUC) was calculated. To predict successful extubation,

we used five-fold cross validation to optimize evaluation

metrics by the machine learning algorithms Random For-

est30, XGBoost31, and LightGBM32 and analyzed important

associated features. The Python language was used for

coding the algorithm. We evaluated the prediction per-

formance of all the methods in relation to accuracy, preci-

sion (positive predictive value), recall (sensitivity), and

F1 score. In addition, we entered test data into the result-

ing algorithm and validated the rate of successful extuba-

tion per minute on trend graphs.

Results

Participant Characteristics and Collected Data

Data from 117 patients were included in this study (Ta-
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Table　1　Patient characteristics

Variables N = 117

Age, median (IQR) 73 (59-84)

Male 77 (66%)

BMI, median (IQR) 22 (19-25)

Severity score

APACHE II score, median (IQR) 24 (22-28)

SOFA score, median (IQR) 11 (9-13)

SAPS II score, median (IQR) 52 (44-64)

Diagnosis

Pneumonia 39 (33%)

Trauma 13 (11%)

CO2 narcosis 10 (9%)

Intoxication 9 (8%)

Endocrine or metabolic disorder 6 (5%)

Sepsisa 5 (4%)

Cardiac failure 5 (4%)

Heat stroke or accidental hypothermia 5 (4%)

Pulmonary embolism 3 (3%)

Burn 3 (3%)

Asthma 1 (1%)

Pneumothorax 1 (1%)

Other 6 (5%) b

Outcome

Duration of mechanical ventilation in 
days, median (IQR) 

5 (2-8)

Duration of hospitalization in days, 
median (IQR) 

16 (10-28)

 Hospital mortality rate 9 (8%)

aData on sepsis due to pneumonia were excluded
bFive patients with water inhalation and one with as-

phyxia

Abbreviations: APACHE, Acute Physiology and 

Chronic Health Evaluation; IQR, interquartile range; 

SAPS, Simplified Acute Physiology Score; SOFA, Se-

quential Organ Failure Assessment

ble 1). Two-thirds of the patients were men, and median

patient age was 73 years (interquartile range [IQR], 59-84

years). Overall, 39 (33%) patients were diagnosed with

pneumonia, 13 (11%) with trauma, and 10 (9%) with CO2

narcosis. The median APACHE II, SOFA, and SAPS II

scores on admission were 22 (IQR, 19-25), 11 (IQR, 9-13),

and 52 (IQR, 44-64), respectively. The median duration of

mechanical ventilation was 5 days (IQR, 2-8 days) and

the median duration of hospital stay was 16 days (IQR,

10-28 days). There were 13 patients who failed extuba-

tion; the indication for reintubation was respiratory fail-

ure in 7 (54%) patients, upper airway constriction in 3

(23%) patients, and aspiration in the other 3 (23%) pa-

tients. The characteristics of patients in the successful and

failed extubation groups are shown in Table 2.

The total number of collected values on 57 patient fea-

tures was 12,268. Of these, 6,721 and 5,547 were labeled

as intubation-required and not, respectively.

Performance and Analysis of Feature Importance

ROC curves were generated (Fig. 3), and the AUC val-

ues were 0.931 (95% confidence interval [CI]: 0.889-0.972),

0.947 (95% CI: 0.908-0.985), and 0.950 (95% CI: 0.909-

0.992) on Random Forest, XGBoost, and LightGBM, re-

spectively. The performance characteristics are shown in

Table 3. Random Forest had an accuracy of 0.897, preci-

sion of 0.910, recall of 0.909, and F1 score of 0.909.

XGBoost had an accuracy of 0.910, precision of 0.912, re-

call of 0.931, and F1 score of 0.921. LightGBM had an ac-

curacy of 0.927, precision of 0.915, recall of 0.960, and F1

score of 0.937.

The results of analysis of feature importance are shown

in Figure 4～6. The most important feature was duration

of mechanical ventilation. Other important features, by

descending order of importance, were maximum airway

pressure, mean airway pressure, FiO2, pH, GCS, TP, al-

bumin, and base excess (on Random Forest); CPK, mean

blood pressure, PEEP, BUN, age, ALT, AST, and anion

gap (on XGBoost); and age, PEEP, LDH, APTT, GCS,

BUN, AaDO2 and CRP (on LightGBM).

Trends in Extubation Success Rate

Extubation success rate per minute was examined in

this model, and trend graphs were drawn. All models

showed that the probability of successful extubation in-

creased over time. Random Forest and LightGBM

showed low probabilities at the time of extubation and

accurately predicted extubation failure. Figure 7 shows

characteristic trends in extubation success rate for pa-

tients with successful and failed extubation.

Discussion

The present results suggest that machine learning can

predict successful extubation of patients on mechanical

ventilation in the ICU. When the predictive performance

of the three models was evaluated, almost all metrics

were sufficient to predict successful extubation. In this

study, LightGBM had the highest AUC value among the

three models. This is consistent with a previous study,

which showed that, as compared with XGBoost, an artifi-

cial neural network, and support vector machine,

LightGBM was the most effective model for predicting

extubation22. In the evaluation metrics, high precision de-

creases re-intubation, and high recall decreases unneces-

sary ventilator use and tracheostomy. LightGBM had the

best precision, and this translates to a reduction in re-

intubations due to extubation failure.
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Table　2　Characteristics of successfully and unsuccessfully intubated patients

Variables
Successful extubation Failed extubation

N=104 N=13

Age, median (IQR) 72 (58-83) 84 (79-88)

Male 69 (66%) 8 (62%)

BMI, median (IQR) 22 (19-25) 21 (18-24)

APACHE II score, median (IQR) 24 (21-28) 27 (23-30)

SOFA scores, median (IQR) 11 (9-13) 12 (11-14)

SAPS II score, median (IQR) 50 (44-63) 66 (55-73)

Diagnosis

Pneumonia 33 (32%) 6 (46%)

Trauma 13 (13%) 0

CO2 narcosis 9 (9%) 1 (8%)

Intoxication 9 (9%) 0

Endocrine or metabolic disorder 6 (6%) 0

Sepsisa 12 (12%) 4 (31%)

Cardiac failure 5 (5%) 0

Heat stroke or accidental hypothermia 4 (4%) 1 (2%)

Pulmonary embolism 2 (2%) 1 (8%)

Burn 3 (3%) 0

Asthma 1 (1%) 0

Pneumothorax 1 (1%) 0

Other 6 (6%) b 0

Outcome

Duration of mechanical ventilation in days, median (IQR) 5 (2-9) 7 (5-8)

Duration of hospitalization in days, median (IQR) 15 (10-27) 23 (18-29)

Hospital mortality rate 4 (4%) 5 (39%)

aData on sepsis due to pneumonia were excluded
bFive patients with water inhalation and one with asphyxia

Abbreviations: APACHE, Acute Physiology and Chronic Health Evaluation; IQR, interquartile range; 

SAPS, Simplified Acute Physiology Score; SOFA, Sequential Organ Failure Assessment

Fig. 3 ROC curves for the machine learning methods
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Table　3　Performance characteristics of Random Forest, XGBoost, and LightG-

BM Models

Model Accuracy Precision Recall F1 score AUC

Random Forest 0.8968 0.9095 0.9088 0.9092 0.9307

XGBoost 0.9097 0.9115 0.9314 0.9214 0.9472

LightGBM 0.9265 0.9146 0.9602 0.9369 0.9502

AUC, area under the curve

Fig. 4 Ranking of feature importance in the Random For-

ests model
Fig. 5 Ranking of feature importance in the XGBoost 

model

Further, this study identified features associated with

successful extubation. Duration of mechanical ventilation

was the most important feature in all models, which is

consistent with the findings of another study. Long-term

intubation is a risk factor for extubation failure, and

long-term mechanical ventilation is an independent risk

factor for worse prognosis33,34. Additionally, long-term me-

chanical ventilation is associated with pneumonia inci-

dence, acute lung injury, and worse mortality35―38. How-

ever, the present models could not determine whether

short-term or long-term intubation was associated with

extubation failure. The importance of other features var-

ied among the models, but FiO2, PEEP, maximum and

mean airway pressure (parallel to PEEP and pressure

support), and GCS were identified as very important fea-

tures, consistent with the weaning protocol. Advanced

age had a strong influence on increasing the risk of extu-

bation failure. Although albumin and CRP were not in-

cluded in the weaning protocol, they reflect pathophysi-

ology and were identified as important features in this

study. It was unclear how some of the important features

identified affect decision-making.
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Fig. 6 Ranking of feature importance in the LightGBM 

model

Fig.　7　Trends for successful extubation (a) and extubation failure (b).

Blue indicates the Random Forest model; green, the XGBoost model; and orange, LightGBM.

aa bb

Linear models such as logistic regression can predict

successful extubation and explain the extent to which a

predictive variable is associated with an objective vari-

able. While it is more difficult for machine learning to ex-

plain the predictive variables by intuition, it may im-

prove prediction accuracy. Our results show that, as com-

pared with the weaning protocol, machine learning ap-

pears to improve prediction of successful extubation. The

extubation success rate can be shown per minute using

this model, and trend graphs can be drawn (Fig. 7). The

model successfully predicted extubation success or failure

for cases that were not used to develop the model. The

process for determining the possibility of successful extu-

bation in machine learning is completely different from

that used in the weaning protocol. In the weaning proto-

col, the need for extubation is determined by using de-

fined factors. By contrast, in machine learning, numerous

factors from digital health records can be used to deter-

mine the probability of successful extubation. Therefore,

machine learning could be a useful clinical decision sup-

port tool for predicting successful extubation.

This study has several limitations. First, because only

patients with respiratory failure were eligible, it is un-

clear whether these models can be used for patients who

undergo intubation for other reasons, such as status epi-

lepticus or severe traumatic brain injury. The applicabil-

ity of the models for patients who underwent intubation

without respiratory failure needs to be validated. Second,

although chest X-ray images39, cuff-leak testing21,40, dia-

phragm ultrasonography41,42, and fluid balance43,44 are

helpful for predicting successful extubation, this study

did not include features and modalities commonly used

to predict successful extubation. Because the most suit-

able way to use machine learning with varied data types
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is unclear, we did not include both images and numbers

when performing machine learning. The inclusion of ad-

ditional features and other modalities may increase pre-

diction accuracy. Further, it might be difficult to use the

present models to predict extubation failure due to post-

extubation laryngeal edema, as we did not include a

variable reflecting laryngeal edema. Validation is re-

quired in order to determine whether this model can pre-

dict extubation success with other datasets.

The results of this study suggest that machine learning

can predict successful extubation of ICU patients on me-

chanical ventilation. LightGBM had the best overall per-

formance. Although variables such as FiO2, PEEP, maxi-

mum and mean airway pressure, and GCS were included

in the weaning protocol, the most important feature was

duration of mechanical ventilation, which is not included

in the weaning protocol.
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