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Background: The coronavirus disease (COVID-19) poses an urgent threat to global public health and is

characterized by rapid disease progression even in mild cases. In this study, we investigated whether

machine learning can be used to predict which patients will have a deteriorated condition and require

oxygenation in asymptomatic or mild cases of COVID-19.

Methods: This single-center, retrospective, observational study included COVID-19 patients admitted

to the hospital from February 1, 2020, to May 31, 2020, and who were either asymptomatic or pre-

sented with mild symptoms and did not require oxygen support on admission. Data on patient charac-

teristics and vital signs were collected upon admission. We used seven machine learning algorithms, as-

sessed their capability to predict exacerbation, and analyzed important influencing features using the

best algorithm.

Results: In total, 210 patients were included in the study. Among them, 43 (19%) required oxygen ther-

apy. Of all the models, the logistic regression model had the highest accuracy and precision. Logistic re-

gression analysis showed that the model had an accuracy of 0.900, precision of 0.893, and recall of

0.605. The most important parameter for predictive capability was SpO2, followed by age, respiratory

rate, and systolic blood pressure.

Conclusion: In this study, we developed a machine learning model that can be used as a triage tool by

clinicians to detect high-risk patients and disease progression earlier. Prospective validation studies are

needed to verify the application of the tool in clinical practice. (J Nippon Med Sch 2022; 89: 161―168)
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Introduction

Coronavirus disease (COVID-19), the disease caused by

severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), presents an urgent threat to global public health.

Cases of COVID-19 have several degrees of severity,

ranging from asymptomatic to critical condition. Al-

though there is no single definition for severity, approxi-

mately 80% of patients with COVID-19 are asymptomatic

or have mild disease1. Mild disease presentation can gen-

erally be defined as the presence of symptoms without

any evidence of pneumonia or hypoxia. Home isolation

and care can be advised for asymptomatic or mild pa-

tients without risk factors, given that measures for appro-

priate infection prevention and control are observed; pa-
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tients should also be closely monitored for any signs or

symptoms of deterioration2. However, COVID-19 is char-

acterized by rapid disease progression even in mild

cases. Shortness of breath has been reported to occur 5-8

days (median) after initial symptom onset3,4, and 6.5% of

patients exhibited rapid disease progression, and 49% of

them succumb to the disease1,5.

The Japanese government has adopted a policy that al-

lows patients with asymptomatic and mild disease who

do not require hospitalization to be treated in designated

hotels so that their family will not be infected. Patients

are then transferred to the hospital in a timely manner

when their conditions deteriorate6. As of January 23,

2021, Japan has had 356,074 reports of COVID-19 and

4,935 the associated deaths7. The third surge occurred,

and the number of infected people increased rapidly; this

resulted in the deaths of many people with mild illness

who were at home or in the designated hotels due to

rapid deterioration. It is important to assess patients who

are at risk of severe disease and predict their prognosis

before they deteriorate for proper intervention execution

and appropriate allocation of medical resources.

Various studies have been conducted to predict the

prognosis of COVID-19 patients. Most prediction models

predicted death, admission to the intensive care unit,

ventilator placement, and length of hospital stay; how-

ever, only a few studies predicted worsening of the dis-

ease with oxygen administration as the outcome8. Addi-

tionally, because blood examinations and a computed to-

mography scan cannot be performed in care facilities

such as homes or hotels, prognosis must be predicted

based only on patient characteristics and vital signs that

can be measured by the patients themselves. We investi-

gated whether machine learning can be used to predict

which asymptomatic or mild patients with COVID-19

will have a deteriorated condition and require oxygena-

tion.

Materials and Methods

Study Population

This is a retrospective observational study included

COVID-19 patients admitted to a single hospital in Tokyo

from February 1, 2020, to May 31, 2020, who were either

asymptomatic or presented with mild symptoms on ad-

mission. Patients with mild diseases were defined as be-

ing symptomatic without evidence of viral pneumonia or

hypoxia2, i.e., not requiring supplemental oxygen. Ac-

cording to the WHO guidelines for the diagnosis of

COVID-19, nasopharyngeal swab specimens were sub-

jected to real-time reverse transcriptase-polymerase chain

reaction (RT-PCR) assay to confirm the presence of SARS-

CoV-22. Exacerbation was defined as the need for supple-

mental oxygen during hospitalization. Supplemental oxy-

gen was administered based on the judgment of attend-

ing physicians and the treatment guidelines for COVID-

19 which was published by the Ministry of Health, La-

bour and Welfare in Japan. According to this guideline,

respiratory failure was defined as an SpO2 level ≤ 93%;

this is because the standard definition of respiratory fail-

ure, a PaO2 level ≤ 60 mmHg, corresponds to an SpO2

level ≤ 90%, but SpO2 measurements are expected to

have an error of approximately 3%9. Approval was ob-

tained by the institutional ethics committee (B-2020-287).

Data Collection

Information was obtained from patients’ electronic

medical records. Patient characteristics included age, sex,

comorbidities, and smoking history (never, past, or cur-

rent). Risk factors for COVID-19 complications include

older age, cardiovascular disease, chronic lung disease,

hypertension, diabetes, and obesity3,10―12. Cardiovascular

disease, respiratory disease, and diabetes were consid-

ered as comorbidities, and data were collected. On ad-

mission, information regarding vital signs (blood pres-

sure, pulse, respiratory rate, temperature, and SpO2 on

room air) was also collected. Variables were mandatory,

and there were no missing values. New variables were

created by addition, subtraction, multiplication, and ex-

ponential power for body temperature, SpO2, and respi-

ratory rate.

Statistical Analysis

We used stratified five-fold cross validation to opti-

mize evaluation metrics using seven machine learning al-

gorithms to predict disease progression and analyze im-

portant influencing features, namely Decision Tree, K-

Nearest Neighbor, Logistic Regression, Naive Bayes, Ran-

dom Forest, Support Vector Machine, and XGBoost. To

tune the parameters of the machine learning, grid search

was used for optimization. The grid search was set to

maximize recall with a precision of 0.8 or higher. We as-

sessed the predictive performance of our model using the

following range of common performance metrics: accu-

racy, precision (positive predictive value), recall (sensitiv-

ity), specificity, F1 score, AUC, and Brier. Python 3.8.3

was used to code the algorithm.

As the respiratory rate may be incorrectly measured by

the patients themselves and blood pressure was not

measured, we included an analysis excluding respiratory

rate that made of only body temperature and SpO2 using
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Table　1　Demographics of patients between exacerbation and non-exacerbation groups

Total
 (N=210) 

Exacerbation
 (n=43) 

Non-exacerbation
 (n=167) 

P value

Age 55 (39-71) 67 (57-75) 49 (38-69) <0.001

Sex 0.005

Female 88 (42%) 10 (23%) 78 (47%) 

Male 122 (58%) 33 (77%) 89 (53%) 

Comorbidity

Cardiovascular 42 (20%) 13 (30%) 29 (17%) 0.06

Respiratory 24 (11%) 7 (16%) 17 (10%) 0.26

Diabetes 11 (5%) 2 (5%) 9 (5%) 0.85

Smoking status 0.14

Never 144 (69%) 25 (58%) 119 (71%) 

Past 30 (14%) 10 (23%) 20 (12%) 

Current 36 (17%) 8 (19%) 28 (17%) 

Body temperature 36.8 (36.5-37.2) 37.2 (36.7-38.5) 36.7 (36.5-37.0) <0.001

Respiratory rate 18 (16-20) 22 (18-26) 17 (16-20) <0.001

Systolic blood pressure 126 (114-145) 121 (114-134) 127 (114-147) 0.15

Diastolic blood pressure 80 (72-90) 77 (71-84) 81 (74-90) 0.07

Heart rate 84 (76-93) 88 (80-101) 82 (75-90) 0.004

SpO2 97 (96-98) 94 (90-97) 98 (97-98) <0.001

Table　2　Performance comparison of each model

DT KNN LR NB RF SVM XGB

Accuracy 0.852 0.88 0.9 0.88 0.866 0.89 0.89

Precision 0.81 0.855 0.893 0.777 0.793 0.883 0.828

Recall 0.369 0.513 0.605 0.627 0.488 0.558 0.555

Specificity 0.976 0.976 0.976 0.946 0.963 0.976 0.976

F1 score 0.505 0.606 0.695 0.679 0.583 0.659 0.652

AUC 0.732 0.827 0.875 0.857 0.866 0.892 0.856

Brier 0.125 0.106 0.084 0.114 0.107 0.086 0.12

AUC, area under curve; DT, Decision Tree; KNN, K-Nearest Neighbor; NB, Naive 

Bayes; LR, Logistic Regression; RF, Random Forest; SVM, Support Vector Ma-

chine; XGB, XGBoost.

the model with the highest accuracy.

Continuous variables are shown as median (interquar-

tile range) and analyzed using the Mann-Whitney test.

Categorical variables are shown as percentages (%) and

analyzed using the chi-square test. Statistical analyses

were performed using SPSS software, version 25 (IBM

Company, Chicago, IL, USA). A P value of <0.05 was

considered statistically significant.

Case Presentation

This study did not include external validation; how-

ever, a case presentation was shown to describe the cus-

tomization of machine learning into clinical practice.

Results

Clinical Characteristics of Patients

A total of 210 patients who were asymptomatic or had

mild COVID-19 were included in the study. Median pa-

tient age was 55 (39-71) years, with 129 (58%) male and

88 (42%) female patients. Patient history features in-

cluded 42 (20%) patients with cardiovascular disease, 24

(11%) with respiratory disease, and 11 (5%) with diabetes.

Among these patients, 43 (20%) required oxygen therapy.

Age, sex, cardiovascular disease, temperature, respiratory

rate, heart rate, and SpO2 were the parameters observed

in both the exacerbation group (comprising patients who

required supplemental oxygen during hospitalization)

and the non-exacerbation group (Table 1).

Machine Learning

Of all the models, logistic regression had the highest

accuracy and precision (Table 2). Logistic regression

analysis had an accuracy of 0.900, precision (positive pre-

dictive value) of 0.893, and recall (sensitivity) of 0.605.
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Fig.　1　Feature importance ranking of logistic regression 

Fig.　2　Overall analysis of features (SHAP value)

This figure shows the influence of each feature on the objective variable; if the 

SHAP value is positive, it has a positive influence on the objective variable. The 

color of each element indicates the value of the features: the redder the color, the 

higher the value. However, for SpO2, the large-small relationship is reversed in the 

process of feature engineering.

SHAP, SHapley Additive exPlanations 

Therefore, logistic regression was used to analyze the

parameters. The most important predictive parameter

was SpO2, followed by age, respiratory rate, and systolic

blood pressure (Fig. 1). Figure 2 shows the SHapley Ad-

ditive exPlanations (SHAP), which represent the contri-

bution of each parameter to the prediction results of the

model. If the SHAP value is positive and red, there could

be a positive correlation. Figure 3 shows the correlation

matrix, which represents the correlation coefficient be-

tween parameters (the darker the color, the stronger the

correlation).

When respiratory rate was excluded from the analysis,

precision decreased from 0.893 to 0.843. When we used

only body temperature and SpO2, precision decreased

from 0.893 to 0.850 (Table 3).

Case Presentation

An 80-year-old woman who presented with fever and

cough. She had a history of diabetes mellitus and cardio-

vascular disease, and was a current smoker. Three days

after the onset of symptoms, she was transferred to the

hospital because of exacerbation of symptoms. A PCR

test was performed on a nasopharyngeal specimen, and
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Fig.　3　Correlation matrix

The correlation coefficient (the Pearson product-moment correlation coefficient) between the two features is shown (the 

darker the color, the stronger the correlation). SpO2, the most important parameter, is correlated with respiratory rate, 

age, systolic blood pressure, respiratory diseases, and body temperature. Age is correlated with systolic blood pressure, 

heart disease, SpO2, diabetes, and diastolic blood pressure.

Table　3　Performance comparison of each feature used

All
All except 

RR
BT and 
SpO2

Accuracy 0.900 0.900 0.895

Precision 0.893 0.843 0.850

Sensitivity (Recall) 0.605 0.630 0.580

Specificity 0.976 0.970 0.976

F1 score 0.695 0.700 0.677

AUC 0.875 0.863 0.869

Brier 0.084 0.088 0.090

AUC, area under curve; BT, body temperature; RR, respi-

ratory rate; SpO2, peripheral oxygen saturation

it was positive for SARS-CoV-2. On the day of admis-

sion, her blood pressure was 164/78 mmHg, pulse was

100/min, respiratory rate was 18/min, body temperature

was 38.8°C, SpO2 was 96% on room air, and the probabil-

ity of supplementary oxygen requirement was 37%.

Favipiravir (brand name, Avigan) was administered

orally. The next day, her blood pressure was 140/72

mmHg, pulse was 88/min, respiratory rate was 18/min,

temperature was 39.8°C, and SpO2 was 96% on room air.

Although SpO2 was unchanged, the probability of sup-

plementary oxygen requirement increased to 95%. On the

same day, her SpO2 dropped, requiring supplemental

oxygen. Thereafter, she gradually deteriorated and was
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intubated on the sixth day after admission.

Discussion

Using machine learning, we predicted the requirement

for supplemental oxygen in asymptomatic patients or

those with mild COVID-19 based only on vital signs that

could be measured by the patients themselves.

Peripheral arterial oxygen saturation (SpO2) was of the

highest importance in this model, and was measured as a

surrogate marker for tissue oxygenation. It is the stan-

dard for continuous, noninvasive assessment of oxygena-

tion.13 In fact, home pulse oximetry monitoring could

identify the need for hospitalization in initially mild

COVID-19 patients and reduce unnecessary emergency

department revisits14―16. In our case, deterioration could be

predicted even when SpO2 was 96% and supplemental

oxygen was not necessary because of the comprehensive

evaluation using not only SpO2 but also other features.

In previous studies, risk factors included older age

more than 60 years (increasing with age), diabetes, hy-

pertension, cardiovascular disease, chronic lung disease

cerebrovascular disease, chronic kidney disease, immuno-

suppression, smoking, and obesity2,3,10―12. In the present

study, age was also of high importance; however, comor-

bidities (cardiovascular disease, respiratory disease, and

diabetes) were not. These features were relatively highly

correlated with SpO2, age, and systolic blood pressure (all

of which are of high importance) and may have resulted

in their low importance in the present model.

There are several strengths to this study. First, it does

not require blood tests or imaging studies. Previous stud-

ies have reported important prognostic factors such as

comorbidities, age, sex, lymphocyte count, C-reactive

protein, body temperature, creatinine, and imaging find-

ings8. However, it is logistically difficult to perform daily

blood tests in patients with asymptomatic or mild

COVID-19 because they stay at home or in hotels. This

study suggested that vital signs alone can predict exacer-

bations with high accuracy. Second, physical contact be-

tween healthcare workers and patients should be signifi-

cantly reduced during the pandemic period; this, in turn,

minimizes the risk of infection. There have been cases in

which healthcare workers have died due to infection

from patients, which is a serious problem17. Even in the

absence of infection, the mental health of healthcare

workers treating and caring for COVID-19 patients can

be greatly affected18,19. Therefore, being able to predict

prognosis only using values that can be measured by the

patients themselves is a great advantage. Third, we can

objectively determine disease severity by changing the

probability of supplemental oxygen requirement. Asymp-

tomatic or mild patients exhibit only small changes in vi-

tal signs; therefore, subjective evaluation of symptoms is

required in many algorithms20,21. This model is expected

to be used for decision making, such as the need for ad-

mission, because it can objectively and numerically show

the trend of exacerbation probability (values from 0 to

100). This prediction model recommends admission to

the hospital when the probability is greater than 50%.

Fourth, the exacerbation probability in multiple patients

can be objectively compared. Scoring for patients with

pneumonia (using CURB-65, A-DROP, Pneumonia Sever-

ity Index, SMART-COP, NEWS2, CRB-65, or qSOFA) can

also predict the severity of COVID-19 with high accu-

racy22―24. In addition, a new scoring system for COVID-19

has been proposed25―28. However, it is difficult to compare

the probabilities of exacerbation between patients when

they have the same score using the scoring system (usu-

ally due to similarities in their vital sign values). It is ex-

pected to be used as a triage tool because it allows an

objective comparison of the exacerbation probabilities.

This study has several limitations. First, it was a retro-

spective observational retrospective study with a small

sample size from a single institution. Prospective valida-

tion studies are needed in clinical practice. However, us-

ing new patients in the supplemental material, we were

able to predict worsening of respiratory condition with-

out changes in respiratory status. Second, recall is low at

the cost of maximizing precision. We maximized preci-

sion to minimize the burden on hospitals and to select

only those who were most likely to deteriorate. However,

once a patient is diagnosed with COVID-19, vital signs

and physical condition are checked daily, and the deci-

sion to hospitalize is not based on a single vital sign. It is

possible to predict deterioration from the trends of multi-

ple measurements even if the recalls are low. Third, it is

assumed that vital signs and SpO2 were measured with

the same quality as that of medical personnel in the hos-

pital. Excluding the respiratory rate from the features or

using only vital signs of body temperature and SpO2 re-

duces accuracy, and thus, it is desirable to measure the

respiratory rate; however, it is necessary to impute the

missing values when it cannot be measured. Some of the

home-based devices used to measure vital signs are not

as accurate as medical devices. For example, smartphone-

based pulse oximetry is insufficient to recommend for

hypoxic patients.29 Fourth, selection bias may have oc-

curred. Although this study included hospitalized pa-
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tients with mild illnesses, it is possible that patients who

were likely to require oxygen therapy were selected.

Conclusions

In this study, we developed a machine learning model

with 90% prediction accuracy that can be used as a triage

tool by clinicians to detect high-risk patients and disease

progression earlier.
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