Secondary Cutaneous Ossification in Keloids of the Lower Abdomen: A Report of Two Cases

Mamiko Tosa¹, Shin-ichi Ansai² and Rei Ogawa¹

¹Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School Hospital, Tokyo, Japan
²Division of Dermatology and Dermatopathology, Nippon Medical School Musashikosugi Hospital, Kanagawa, Japan

Cutaneous ossification is a rare benign dermatological condition in which bone forms in the dermis or subcutaneous tissue. It is classified as primary when it emerges without a pre-existing condition and secondary when it is associated with an underlying condition such as trauma, scars, inflammation, or neoplastic disease. The secondary form accounts for most cases of cutaneous ossification. The pathogenesis of cutaneous ossification is not clear. Keloids are benign fibroproliferative skin disorders characterized by chronic inflammation. Their pathogenesis is also not fully understood. We report two cases of postoperative secondary ossification in lower abdominal keloids and review the literature on secondary ossification of the skin. We speculate that severe chronic inflammation in keloids drives osteoblastic transformation of mesenchymal stem cells, endothelial cells, or fibroblasts in the keloids.

Key words: cutaneous ossification, keloid, secondary ossification, inflammation

Introduction/Background

Cutaneous ossification (also known as osteoma cutis) and cutaneous calcification (calcinosis cutis) are rare conditions that involve deposition of calcium salts in skin and subcutaneous tissues. However, unlike cutaneous calcification, cutaneous ossification is associated with dystrophic deposits of bone¹. Although this benign condition may present as a primary skin lesion, it is usually secondary to skin conditions such as trauma, scars, and inflammation and malignant and benign neoplastic lesions¹. The cause of cutaneous ossification is unclear.

Keloids are a benign recalcitrant fibroproliferative skin disorder that arises from damage to the dermis. The recurrence rate after surgical treatment is 40-70% but decreases to less than 10% when surgery is accompanied by adjuvant treatments such as postoperative radiotherapy²-⁴. There are no specific drugs for this condition because of the lack of suitable animal models. To our knowledge, there are no detailed studies of secondary ossification associated with keloids.

Here we describe two cases of cutaneous ossification associated with postoperative lower abdominal keloids and review the literature on secondary ossification of the skin.

Case 1

Four years previously, a 42-year-old woman visited our outpatient clinic for assessment of scar pain after gynecological surgery for uterine fibroids. Clinical examination revealed a hard, red, elastic, and raised 3 × 2.5-cm mass in the lower part of the postoperative scar (Fig. 1a). The patient had no history of skin cancer in this area and no personal or family history of bone or metabolic disorders. Postoperative keloid was diagnosed and she underwent complete surgical resection followed by electron beam therapy. Histopathological analysis revealed a nodular dermal lesion consisting of excessive “keloidal collagen bundles,” ie, thick, haphazardly arrayed, glassy, and eosinophilic collagen bundles that formed nodular, whorled masses. The number of fibroblasts in the lesion was elevated (Fig. 2a). Notably, the lower part of the lesion contained small nodules of bone tissue (Fig. 2b).
These clinical and pathological findings indicated a diagnosis of postoperative keloid associated with secondary cutaneous ossification. No recurrence has been observed at 2 years after surgery (Fig. 1b), and the patient continues to be followed up.

Case 2
A 32-year-old woman visited our outpatient clinic for assessment of scar pain after dermatological surgery for an epidermal cyst 6 years previously. Clinical examination revealed a hard, red, elastic, and raised 3 × 11-cm mass in the postoperative scar (Fig. 3a). The patient had no history of skin cancer in this area and no personal or family history of bone or metabolic disorders. Postoperative keloid was diagnosed and she underwent complete surgical resection followed by electron beam therapy. Histopathological analysis revealed findings similar to those of Case 1 (Fig. 4a, b), namely, keloidal collagen, elevated fibroblast numbers, and small ossified nodules in the lower part of the lesion (Fig. 4c). Postoperative keloid associated with secondary cutaneous ossification was diagnosed. No recurrence has been observed at 3 years after surgery (Fig. 3b).

Discussion
Cutaneous ossification involves deposition of bone in skin and is caused by production of osteoblast tissue. To date, three large case series on secondary cutaneous osteoma have been published. In 1963, Roth et al. summarized the causes of secondary cutaneous ossification in 120 cases they experienced and 305 cases they identified in the literature: they detected 153 skin conditions that developed before secondary cutaneous ossification, including acne vulgaris, acne, scleroderma, dermatomyositis, basal cell carcinoma, scarring, venous stasis, calcified epithelioma, and folliculitis. In 1997, Burgdorf and Nase-
Fig. 3 Preoperative (a) and postoperative (b) images showing the clinical findings for Case 2. The patient had a keloid in the pubic area. No recurrence was observed at 3 years after surgery.

Fig. 4 Histological findings for Case 2. (a) Low-power image showing a nodular lesion in the dermis. The lesion consisted of nodule-forming, whorled collagen bundles and a high number of fibroblasts. The lower part of the lesion had small nodules consisting of bony tissue. (b and c) Higher-power images showing the thick, glassy, eosinophilic collagen bundles (b) and bony tissue in the lower part of the keloid (c).

Table 1 Causes of cutaneous osteoma (modified with permission from Ishida et al., 2014 under a Creative Commons Attribution Noncommercial License)

<table>
<thead>
<tr>
<th>Cause</th>
<th>Primary</th>
<th>Secondary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>47 (17.3%)</td>
<td>224 (82.7%)</td>
</tr>
<tr>
<td>Common cause of secondary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilomatricoma</td>
<td>56 (20.7%)</td>
<td></td>
</tr>
<tr>
<td>Melanocytic nevus</td>
<td>51 (18.8%)</td>
<td></td>
</tr>
<tr>
<td>Inflammation or trauma</td>
<td>26 (9.6%)</td>
<td></td>
</tr>
<tr>
<td>Basal cell carcinoma</td>
<td>19 (7%)</td>
<td></td>
</tr>
</tbody>
</table>

Although the pathogenesis of secondary cutaneous ossification has not been elucidated, Burgdorf and Nasemann suggested that cutaneous ossification is generally caused by either transformation of primitive mesenchymal cells into osteoblasts or metaplastic transformation of other, as yet undetermined, dermal cells as a result of stimulation by particular cellular environments. With regard to the latter theory, Schumachers and Worret suggested that the undetermined dermal cells may be fibroblasts: they hypothesized that cutaneous ossification may involve an intracellular signaling pathway that induces skin fibroblasts to proliferate abnormally and later differen-
entiate into bone tissue\(^7\).

There is limited evidence that one or both of these possibilities could mediate keloid ossification. Mesenchymal stem cells in keloid lesions give rise to normal fibroblasts and myofibroblasts\(^8\). Because mesenchymal stem cells can readily differentiate into osteoblasts\(^8\), mesenchymal stem cells in keloids may give rise to osteoblasts. This is further supported by the association between GNAS mutations and cutaneous ossification. GNAS regulates adipose-derived mesenchymal progenitor cell commitment, and inactivating mutations in this gene induce osteoblast differentiation\(^9\).

With regard to the possibility that undetermined dermal cells differentiate into osteoblasts, a previous study reported that tissue injury—from trauma or infection, for example—that produces local hypoxia can induce endothelial cells to express BMPs, which causes them to convert into osteoblasts\(^10\). Because keloids develop after trauma, are associated with chronic inflammation, and have dysregulated endothelial cells\(^2\), this mechanism may drive keloid ossification. This is supported by findings for the rare condition called osteonevus of Nanta, which is characterized by ossification of the intradermal nevus\(^10\). Chronic inflammation is thought to be a trigger of ossification in this condition since cell infiltration is present near the osteoma and around hair follicles\(^10\). Interestingly, our cases of ossified keloid occurred in the pubic area, and histological findings indicated peri-follicular inflammation and calcification. This supports the hypothesis that chronic inflammation in keloids leads to local calcification and ossification.

Another possibility is that fibroblasts, which are abundant, abnormal, and proliferate vigorously in keloids, differentiate into osteoblasts, possibly as a result of chronic inflammation in keloids\(^2\). This hypothesis is supported by the observation that cutaneous ossification lesions not only contain osteoblasts and bone\(^9\), they are surrounded by type I collagen and osteonectin-positive fibroblasts\(^16\).

There are two types of normal bone ossification: endochondral ossification, where hyaline cartilage is replaced by bony tissue, and membranous bone formation, where bone forms directly without cartilage analogs\(^9\). Ossification in keloids is likely due to membranous bone formation, since the lesions in both our patients had no cartilage tissue.

In conclusion, chronic inflammation, which is severe in keloids, may drive local mesenchymal stem cells, endothelial cells, or fibroblasts to differentiate into osteoblasts that then generate bony nodules in keloids. Future studies should examine the mechanisms that induce bone formation in keloids.

Conflict of Interest: None declared.

References

(Received, March 17, 2021) (Accepted, April 30, 2021) (J-STAGE Advance Publication, April 11, 2022)