—Case Reports—

Use of a Compact, Lightweight X-ray Unit to Reduce the Risk of Five Invasive Procedures in the Emergency Room

Yutaka Igarashi1, Shimpei Ikeda1,2, Kunio Hirai3, Naoki Tominaga1,4, Taiki Mizobuchi1, Kenta Shigeta1, Hiromoto Ishii1 and Shoji Yokobori1

1Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
2Department of Radiology, Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan
3Division of Radiological Technology, Nippon Medical School Hospital, Tokyo, Japan
4Department of Emergency and Critical Care Medicine, Saitama City Hospital, Saitama, Japan

Background: Many invasive procedures performed in the emergency room (ER) have potential risks and complications. Because of their limitations, in particular size, portable X-ray devices are generally not used during such procedures. However, miniaturized units enable physicians to obtain X-ray images without assistance.

Methods: We developed a safe, compact, and lightweight X-ray unit that was used during five invasive procedures in the ER. In all procedures, a chest X-ray image was obtained, to confirm the utility of the unit.

Results: Case 1 (central venous catheter placement): After needle and guidewire insertion and catheter placement, the location of the catheter could be confirmed. Case 2 (chest tube insertion): During insertion of a chest tube into the pleural space, the tip of the thoracic tube was confirmed to be at the correct location. Case 3 (percutaneous tracheostomy or cricothyroidotomy): After needle and guidewire insertion, the guidewire was visualized in the right main bronchus and was inserted into the trachea. Case 4 (resuscitative endovascular aortic balloon of the aorta): The captured image revealed that the catheter was located in zone I before balloon inflation. Case 5 (Sengstaken-Blakemore tube): The image revealed that the balloon was located in the stomach.

Conclusions: The portable X-ray unit improved medical safety during invasive procedures frequently performed in the ER. (J Nippon Med Sch 2022; 89: 555–561)

Key words: thoracic radiography, complications, central venous catheters, chest tubes, tracheotomy

Introduction

Critically ill patients, regardless of status, are first transferred to the emergency room (ER) for diagnosis and resuscitation. Many invasive ER procedures performed for such patients are associated with potential risks, including post-procedural complications1,2. Intraprocedural imaging, such as ultrasonography and fluoroscopy, has reduced the incidences of some complications. However, patients must be transported to the fluoroscopy room. In addition, because ultrasound waves can be disrupted by air and gas and do not penetrate deeply, some areas cannot be visualized. Although intraprocedural radiology does not require patients to be moved and can capture images from areas that cannot be visualized with ultrasound, its use has been limited because of the size of conventional devices and the need for technicians3.

Portable X-ray devices have become increasingly miniaturized, permitting physicians to obtain X-ray images anywhere with ease4–6. Thus, intraprocedural X-ray devices offer safety benefits during medical procedures. However, little is known about the use of portable X-ray devices during invasive procedures. We developed and
assessed the safety of a compact, lightweight X-ray device and report its utility for frequently performed invasive procedures in the ER.

Materials and Methods

Setting
This study was conducted in a single center and was approved by the Ethics Committee of Nippon Medical School Hospital, Japan (30-09-993). In Japan, only doctors and radiology technicians are authorized to operate X-ray devices.

Medical Equipment
The compact, lightweight X-ray unit has been commercialized and comprises three parts: an X-ray tube, weighing only 3.5 kg (CALNEO Xair, Fujifilm Corporation, Tokyo, Japan); a laptop with which the operator controls the functioning of the device; and a flat panel detector (CALNEO Smart, Fujifilm Corporation, Tokyo, Japan) (Fig. 1). The preset parameters were 90 kV and 0.5 mAs for the chest, 90 kV and 2.5 mAs for the abdomen, and 70 kV and 2 mAs for the extremities. Although conventional mobile X-ray units require technical knowledge, such as kV and mAs settings before examination, this X-ray unit is superior in terms of usability. This device has received marketing approval from the Pharmaceuticals and Medical Devices Agency of Japan.

Procedures
In this study, chest radiographs were taken to confirm the location of the catheter or tube tip during five frequently performed invasive ER procedures. The procedures were central venous catheter (CVC) (or peripherally inserted central catheter) placement, chest tube insertion, percutaneous tracheotomy (or cricothyroidotomy), resuscitative endovascular balloon occlusion of the aorta (REBOA), and Sengstaken-Blakemore (SB) tube insertion.

While performing the procedure, a physician wearing an X-ray radiation-protective apron placed the flat panel detector of the unit under the patient and the X-ray tube above. When the guidewire, catheter, or tube was inserted, the physician selected the radiation intensity, pressed the relevant button, and immediately viewed the image on the laptop screen. If the catheter and tube tips were wrongly positioned, another X-ray image was taken after repositioning.

Results

Case 1: CVC Placement
A 48-year-old woman was intubated and received mechanical ventilation after surgical clipping for a cerebral aneurysm. The patient required CVC placement in the right internal jugular vein. A physician set the X-ray devices, an ultrasound device, and a flat panel detector under the patient during preoperative preparation (Fig. 2). When the needle and guidewire were inserted, a chest radiograph showed the guidewire in the superior vena cava (Fig. 3A). When the catheter was placed, a chest radiograph showed that the catheter tip was in the correct location (Fig. 3B).

Case 2: Chest Tube Insertion
A 70-year-old woman presenting with difficulty breathing was diagnosed with congestive heart failure and bilateral pleural effusion. The effusion was drained because oxygen was required to maintain a percutaneous saturation of over 90%. During insertion of the chest tube into the pleural space, an intraoperative chest radiograph confirmed that the tip of the thoracic tube had reached the correct location (Fig. 4).

Case 3: Percutaneous Tracheostomy
A 60-year-old man diagnosed with intracerebral hematoma was intubated and received mechanical ventilation. A tracheostomy was required for prolonged endotracheal intubation. A Pean clamp forceps was placed at the insertion site, and a chest radiograph was taken. Forceps were used to determine the position of the tip of the intuba-
tion tube in relation to the insertion site (Fig. 5A). The intubation tube was withdrawn by 3.5 cm because there was a 3-cm gap between the tip of the intubation tube and insertion site (Fig. 5B). When the needle and guidewire were inserted, an intraoperative chest radiograph confirmed the presence of the guidewire in the right main bronchus (Fig. 5C). After adequate dilatation, the dilator was removed, and a tracheostomy tube was inserted into the trachea above the guiding catheter.

Case 4: REBOA

A 70-year-old man was transported to the ER after a traffic accident. Computed tomography (CT) revealed splenic and renal hemorrhage and pelvic fracture. The patient’s blood pressure decreased after the CT scan. A REBOA catheter was inserted and advanced into the aorta, after which a 7-French introducer sheath was inserted through the right femoral artery. An intraoperative chest radiograph revealed the REBOA catheter in zone I extending from the origin of the left subclavian artery to the celiac artery before balloon inflation (Fig. 6). After balloon inflation, the patient’s blood pressure increased,
Percutaneous tracheostomy. (A) Image showing a distance of 3 cm between the tip of endotracheal tube and Pean clamp forceps. (B) Image showing the location of the tip of the endotracheal tube in relation to the Pean clamp forceps after withdrawing the endotracheal tube by 3.5 cm. (C) Chest X-ray image showing the guidewire in the right main bronchus.

Resuscitative endovascular balloon occlusion of the aorta. Chest X-ray image showing the tip of the resuscitative endovascular balloon occlusion of the aorta catheter (arrowhead) in zone I.

Sengstaken–Blakemore (SB) tube insertion. Chest X-ray image showing the balloon of the SB tube (arrowhead) in the stomach.

and splenectomy could be performed.

Case 5: SB Tube Insertion

A 48-year-old man diagnosed with alcoholic cirrhosis and esophageal varices presented with hematemesis and was transferred to our hospital. He had hypotension and anemia with a hemoglobin level of 3.1 g/dL. As it was difficult to stop the bleeding with an endoscope, an SB tube was inserted. After balloon inflation, an intraoperative chest radiograph showed that the balloon was located in the stomach (Fig. 7). The SB tube was then pulled, and the esophageal balloon was inflated. Subsequently, his blood pressure increased and hemoglobin level normalized. On the next day, endoscopic variceal ligation was performed successfully.
Comapct X-ray and Invasive Procedures

Discussion
An intraprocedural visualization technique that uses a compact, lightweight X-ray unit was used during five frequently performed invasive procedures. Observations from these case studies suggest that this technique reduces the risk of complications during invasive procedures. Below, we review the complications of each procedure and describe how a compact, lightweight X-ray unit was useful for preventing complications.

CVC insertion: The safety and ease of procedures for CVC insertion have improved. However, the rate of complications for CVC insertion remains high. A retrospective cohort study reported an overall complication rate of 15%. The complications included failure to place the catheter (22%), arterial puncture (5%), catheter malposition (4%), pneumothorax (1%), subcutaneous hematoma (1%), hemоторax (<1%), and cardiac arrest (<1%). Ultrasound-guided techniques have reduced the risk of inadvertent arterial puncture (risk ratio [RR] 0.21, 95% confidence interval [CI] 0.06 to 0.82; \(P = 0.02 \)) and hematoma (RR 0.26, 95% CI 0.09 to 0.76; \(P = 0.01 \)) for the subclavian vein. However, ultrasound-guided techniques cannot detect misplacement of the CVC or ensure placement at the correct location. Fluoroscopy is often used for insertion of peripherally inserted central catheters, and a randomized controlled trial found that misplacement at the correct location. Physicians can obtain X-ray images without assistance as soon as the patient presents to the hospital. At least, it reduces the time spent on contacting and traveling with technicians. As an example, it took 8.0 min for the order (5.5 min) and traveling (2.5 min), for a total 22.7 min from the time the examination was placed to time the X-
ray films were uploaded to the picture archiving and communication system. In addition, although fluoroscopy-guided procedures can prevent complications, they require transferring the patient to the fluoroscopy room. A study of peripherally inserted central catheters found that the average transfer time was approximately 26 min, which was similar to the procedure time. Our technique could be particularly useful for critically ill patients who cannot be safely transferred to the fluoroscopy room.

Radiation Dose

A single chest X-ray results in an exposure to 0.02 mGy of radiation, whereas fluoroscopy results in 20 mGy/min of radiation. A total of 0.63 min is required to insert a CVC by radiologists using fluoroscopy, and patients are exposed to an average of 12 mGy of radiation during fluoroscopy-assisted CVC insertion. Therefore, radiation exposure during CVC insertion would be lower with the compact X-ray technique than with fluoroscopy.

Limitations

This study has several limitations. First, no control group was included in this study. Although it is plausible that increased visibility improves safety, it could not be determined if the device contributed to safety. To our knowledge, this method is straightforward and safe, but difficulties may arise in the future. We were unable to adequately investigate risk and troubleshooting. Second, the study did not evaluate image quality. However, no X-ray images were retaken because of poor quality. In addition, emergency physicians are unfamiliar with adjusting the position of the flat panel detector. Hence, images were sometimes not obtained. Use of a larger panel might resolve this issue.

Conclusions

We developed a visualization technique that uses a compact, lightweight X-ray unit for invasive procedures in the ER. This technique appears to reduce the risk of complications during such procedures.

Acknowledgements: This study was conducted in collaboration with Fujifilm Corporation (Tokyo, Japan), which provided the medical equipment and technical support.

Conflict of Interest: None declared.

References
