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Background: Trauma is a serious medical and economic burden worldwide, and patients with trau-

matic injuries have a poor survival rate after cardiac arrest. The authors developed a prediction model

specific to prehospital trauma care and used machine learning techniques to increase its accuracy.

Methods: This retrospective observational study analyzed data from patients with blunt trauma injuries

due to traffic accidents and falls from January 1, 2018, to December 31, 2019. The data were collected

from the National Emergency Medical Services Information System, which stores emergency medical

service activity records nationwide in the United States. A random forest algorithm was used to de-

velop a machine learning model.

Results: The prediction model had an area under the curve of 0.95 and a negative predictive value of

0.99. The feature importance of the predictive model was highest for the AVPU (Alert, Verbal, Pain, Un-

responsive) scale, followed by oxygen saturation (SpO2). Among patients who were progressing to car-

diac arrest, the cutoff value was 89% for SpO2 in nonalert patients.

Conclusions: The machine learning model was highly accurate in identifying patients who did not de-

velop cardiac arrest. (J Nippon Med Sch 2023; 90: 186―193)
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Introduction

Background

Trauma is a serious medical and health care burden

and accounts for 10% of all deaths worldwide1. In the

United States, trauma is the leading cause of death

among persons aged 1 to 44 years2. Cardiac arrest after

trauma injury is associated with a very poor survival rate

(1-month survival rate <4%)3.

The most common emergency prediction scores used

in hospital general wards are the National Early Warning

Score (NEWS)4 and the Modified Early Warning Score

(MEWS)5. The Emergency Medical System Modified

Early Warning Score (EMEWS) was developed by apply-

ing MEWS in a prehospital setting6. In previous studies,

MEWS++ was developed by applying machine learning

to MEWS7. Machine learning techniques have the poten-

tial to improve prognostication8. Some studies have re-

ported the use of machine learning in research on pre-

hospital emergency medicine9―12.

If cardiac arrest can be predicted before hospital ad-

mission, it might be possible to dispatch a physician to

the scene. Such prediction would also enable transport to

an appropriate medical facility and early start of treat-

ment at the receiving hospital13. However, existing predic-
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tive scores have been created for specific medical condi-

tions; therefore, a score specific to prehospital trauma

care is needed.

The authors developed a predictive model specific to

prehospital trauma care and used machine learning to in-

crease its accuracy.

Methods

Study Design and Setting

This retrospective study analyzed data collected by the

National Emergency Medical Services Information Sys-

tem (NEMSIS) from January 1, 2018, to December 31,

2019. NEMSIS is a public database maintained by the

National Highway Traffic Safety Administration and re-

cords emergency medical service activity nationwide in

the United States. The National Highway Traffic Safety

Administration Office of Emergency Medical Services

(EMS) and the University of Utah jointly manage data

quality and administration. NEMSIS includes data on a

wide range of injuries and illnesses, including endoge-

nous, traumatic, out-of-hospital cardiac arrest (OHCA),

and other exogenous conditions. Data available include

demographics and vital signs, details of procedures per-

formed, and drugs administered.

Using previously published cardiac arrest prediction

scores, we developed a model to predict traumatic car-

diac arrest. EMS-witnessed arrest was defined as an in-

jured patient who experienced cardiac arrest after EMS

arrival at the scene. Non-OHCA was defined as an in-

jured patient who was not in cardiac arrest at the time of

EMS contact and showed signs of life until arriving at

the hospital6. One of the scores we referred to, EMEWS,

is evaluated in terms of SBP, HR, RR, and AVPU (Alert,

Verbal, Pain, Unresponsive) scale. An SBP lower than 90

or higher than 140 is scored as 1 point; an HR lower than

60 or higher than 100 as 1 point; an RR lower than 10 or

higher than 20 as 1 point; and an AVPU classification of

nonalert as 1 point. The total score is the sum of the

scores for these components.

This study was approved by the Ethical Review Board

of Nippon Sport Science University (approval no. 021-H

237).

Selection of Patients

The current study included patients with blunt trauma

injuries due to traffic accidents and falls. Patients were

excluded if lights and sirens were off during transport, if

the incident was not a 9-1-1 scene response, if the patient

was not transported by ground, if the patient was

younger than 18 years, if data on age were missing, if

cardiac arrest occurred before EMS arrival, if data were

missing for the time of arrest or for the vital signs sys-

tolic blood pressure (SBP), heart rate (HR), SpO2, or res-

piratory rate (RR). Incidents that were not a 9-1-1 scene

response and those for which lights and sirens were off

during transport were excluded on the basis of previ-

ously published criteria6. The analysis also excluded inju-

ries with a low risk of progression to cardiac arrest,

which was defined with the EMS MEWS (EMEWS). Spe-

cifically, we defined a vital sign with an EMEWS score of

0 as low risk of progression to cardiac arrest (EMEWS

values were 0 for an SBP 90-140 mm Hg, an HR of 60-

100 bpm, an RR of 10-20 bpm, and an AVPU status of

alert). The variables included in the analysis were age,

sex, cause of injury, presence of head trauma, oxygen ad-

ministration, SBP, HR, RR, SpO2, AVPU, turnout time,

time spent at the scene, and transport time. Dispatch

time was defined as the time from the EMS call to arrival

at the scene, scene time was defined as the time from ar-

rival at the trauma scene to departure from the scene,

and transport time was defined as the time from depar-

ture from the scene to arrival at the hospital. The NEM-

SIS variables used to generate this composite variable are

described in Appendices 1 and 2 of the Supplementary

Material (https://doi.org/10.1272/jnms.JNMS.2023_90-20

6). We included these vital signs and oxygen administra-

tion as features, which were selected concerning NEWS

and EMEWS. The presence of head injury was included

in the features because it could affect consciousness14. The

final predictive model included age, sex, cause of injury,

head injury, RR, SpO2, HR, SBP, AVPU, and oxygen ad-

mission.

Statistical Analysis

The machine learning model was developed based on

the flow chart shown in Figure 1. The training dataset

(2018), under sampling15, was performed to adjust the

number of cases in the EMS-witnessed arrest and non-

OHCA groups for balance. We performed cross-

validation and a grid search for hyperparameter tuning

and implemented model training. The test dataset (2019)

was developed by using the results of a cross-validation

and grid search performed on the training dataset (2018).

The predictive models used were random forest, logis-

tic regression, and LightGBM. After machine learning

was performed on all patient data, the data were catego-

rized into three levels by using EMEWS, and the predic-

tion accuracy was verified for each category. We defined

risk of cardiac arrest for each EMEWS total point. Those

with EMEWS values of 0-1 were considered at low risk,
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Fig.　1　Machine learning model flow
EMS = Emergency Medical System, LightGBM = Light Gradient Boosting Machine, OHCA = out-
of-hospital cardiac arrest

those with values of 2-3 at moderate risk, and those with

values of 4 at high risk6.

We evaluated sensitivity, specificity, precision, accuracy,

F1 score, area under the curve (AUC), and Brier score for

all machine learning models. We used the chi-square test

for categorical variables, and the Mann-Whitney U test

for continuous variables. Statistical significance was set at

P<0.05. Missing values were managed by multiple impu-

tation. Python (version 3.9.7; Python Software Founda-

tion, Beaverton, OR, USA) was used to develop the ma-

chine learning model. SPSS Statistics (version 28; IBM

Corp., Armonk, NY, USA) was used for statistical analy-

sis.

Results

Characteristics of Patients

The flowchart for including patients in this study is

shown in Figure 2. Training data from 2018 recorded

22,532,890 individuals, 1,142,356 of whom suffered

trauma in traffic accidents. Finally, after applying the

study criteria, there were 289 patients in the EMS-

witnessed arrest group and 304,374 in the non-OHCA

group, respectively.

Test data from 2019 data yielded 34,203,087 individu-

als, 1,680,251 of whom were injured or ill because of a

traffic accident. After applying the study criteria, 469 per-

sons were in the EMS-witnessed arrest group and 695,594

were in the non-OHCA group. Patient characteristics are

shown in Table 1. In 2018, the missing values were as

follows: AVPU (27.9%), SpO2 (25.6%), transport time

(19.6%), scene time (13.8%), RR (6.1%), SBP (6.0%), and

HR (5.2%). In 2019, the corresponding values were AVPU

(25.1%), SpO2 (21.2%), transport time (55.3%), scene time

(50.1%), response time (43.1%), RR (6.9%), and SBP

(5.5%).

Main Results

The AUC was 0.95 for random forest, 0.94 for logistic

regression, and 0.95 for LightGBM. Other performance

indicators are shown in Table 2. Random forest had the

highest AUC, precision, and F1 score and was thus the

main machine learning model used in this study. The fea-

ture importance of the random forest model was highest

for AVPU, followed by SpO2, RR, SBP, and HR. Other im-

portant features are shown in Figure 3. The AUC for the

random forest model was 0.95. Other performance indi-

cator scores were 0.92 for sensitivity, 0.92 for specificity,

0.02 for precision, 0.99 for negative predictive value, 0.05

for F1 score, 0.97 for accuracy, and 0.02 for Brier.

The AUC for risk of progression to cardiac arrest was

0.89 for low risk, 0.94 for moderate risk, and 0.68 for

high risk. Other performance indicators are shown in Ta-

ble 3.
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Fig.　2　Patient flow chart
AVPU = AVPU (Alert, Verbal, Pain, Unresponsive) scale, EMEWS = Emergency Medical System Modified Early Warning Score, 
EMS = Emergency Medical Services, HR = heart rate, NEMSIS = National Emergency Medical Services Information System, 
OHCA = out-of-hospital cardiac arrest, RR = respiratory rate, SBP = systolic blood pressure, SpO2 = peripheral capillary oxygen 
saturation, TA = traffic accident
EMEWS score 0 = SBP of 90–140 mm Hg, HR of 60–100 bpm, RR of 10–20 bpm, and AVPU status of alert

Discussion

In this study, to predict prehospital cardiopulmonary ar-

rest among trauma patients we constructed a model in-

corporating data from the United States EMS database on

vital signs, patient background characteristics, and proce-

dures performed. The results revealed an AUC of 0.95 for

the predictive model and a negative predictive value of

0.99. The feature importance of the random forest model

was highest for AVPU, followed by SpO2. The AUC was

0.95 for the predictive model and 0.89 for patients at low

risk of cardiac arrest.

Traumatic cardiac arrest witnessed by EMS accounted

for 18.7% of OHCA. The 1-month survival rate for this

group was previously reported to be 10.9%, and the rate

of return of spontaneous circulation was 14.4%. Median

time from injury to cardiac arrest was 18 min16. Because

early intervention at the scene is critical for injured pa-

tients at high risk of cardiac arrest during transport, it is

critical, on arrival at the scene, to promptly identify pa-

tients who are most likely to progress to cardiac arrest.

EMEWS is a scoring system that uses prehospital SBP,

PR, RR, and AVPU to predict cardiac arrest during emer-

gency transport of medically endogenous patients. The

AUC of EMEWS was 0.746. This scoring system is a

modified version of MEWS, which predicts ward emer-

gencies that are evaluable in a prehospital setting. The

predictive model for the present trauma patients had an

AUC as high as 0.89, for patients at low risk of cardiac

arrest on EMEWS (low risk). Among the present patients

with an EMEWS score of 1, 74.3% had an AVPU that was

scored as not alert. In addition, many patients at low risk

of cardiac arrest had a low SpO2 value, which is not used

in EMEWS (specificity: 0.779; AUC: 0.886; 95% confidence

interval [CI]: 0.868-0.904]. The percentage of patients with

an SpO2 less than 89% was 25.0%, with an EMEWS score

of 0, and 66.2% had an EMEWS score of 1.
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Table　1　Patient characteristics

2018 Training data 2019 Test data

EMS-witnessed 
arrest

289

Non-OHCA
289

EMS-witnessed 
arrest

469

Non-OHCA
695,594

Age 49 (32-66) 56 (37-73) 51 (30-67) 51 (31-69) 

Gender
Male 200 (69.2%) 115 (39.8%) 349 (74.4%) 376,441 (54.1%)

Cause of injury
TA 229 (79.2%) 158 (54.7%) 362 (77.8%) 297 (63.9%) 
Fall 60 (20.8%) 131 (45.3%) 103 (22.2%) 168 (36.1%) 

Head injury
Yes 29 (10.0%) 37 (12.8%) 39 (8.3%) 70,046 (10.1%)

Oxygen admission
Yes 93 (32.2%) 10 (3.5%) 180 (38.4%) 24,297 (3.5%)

SBP [mm Hg] 115 (92-142) 150 (137-168) 108 (88-130) 142 (128-158) 

HR [bpm] 76 (55-112) 90 (78-105) 79 (55-113) 88 (78-100) 

RR [bpm] 12 (6-18) 18 (16-20) 12 (7-16) 18 (16-18) 

SpO2 [%] 84 (78-90) 97 (95-99) 82 (77-89) 98 (96-99) 

AVPU
Awake 33 (11.4%) 274 (94.8%) 44 (9.4%) 673,715 (96.9%)
Voice 7 (2.4%) 6 (2.1%) 19 (4.1%) 11,051 (1.6%)
Pain 11 (3.8%) 5 (1.7%) 15 (3.2%) 4,784 (0.7%)
Unresponsive 238 (82.4%) 4 (1.4%) 391 (83.4%) 6,044 (0.9%)

Time
Response 6:00 (4:00-10:00) 6:00 (4:00-9:00) 7:44 (4:31-11:18) 7:23 (4:51-10:59) 
Scene 19:00 (12:00-22:00) 17:00 (12:00-22:00) 15:45 (10:14-21:21) 16:00 (11:03-21:54) 
Transport 11:00 (7:00-22:00) 13:00 (8:00-21:00) 14:15 (8:53-21:08) 14:08 (8:49-20:46) 

AVPU = the AVPU scale (an acronym from “Alert, Verbal, Pain, Unresponsive”), HR = heart rate, OHCA = out of hospital car-
diac arrest, RR = respiratory rate, SBP = systolic blood pressure, SpO2 = peripheral capillary oxygen saturation, TA = traffic ac-
cident
Response time = the time from unit notified by dispatch to unit arrived on scene; Scene time = the time from unit arrived on 
scene to unit left scene; Transport time = the time from unit left scene to patient arrived at destination.
Data given as number of positive observations/total number of observations (percentage) or as median (interquartile range).

Table　2　Performance indicators for each machine learning model

Measure Random Forest Logistic regression LightGBM

AUC 0.95 0.94 0.95
Sensitivity 0.92 0.92 0.93
Specificity 0.92 0.92 0.93
Precision 0.02 0.02 0.01
NPV 0.99 0.99 0.99
F1 score 0.05 0.04 0.03
Accuracy 0.97 0.97 0.96
Brier 0.02 0.02 0.03

AUC = area under the curve, LightGBM = Light Gradient Boosting 
Machine, NPV = negative predictive value
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Fig. 3 Feature importance for all patients
AVPU = AVPU (Alert, Verbal, Pain, Unresponsive) scale, HR = heart rate, RR = respiratory rate, SpO2 = pe-
ripheral capillary oxygen saturation, SBP = systolic blood pressure
Feature importance assigns the score of input features based on their importance to predict the output. The 
greater the extent to which features predict the output, the higher their score.

Table　3　Performance indicators for each risk in EMEWS

Measure All patients Low risk Moderate risk High risk

AUC 0.95 0.89 0.94 0.68
Sensitivity 0.92 0.98 0.95 0.98
Specificity 0.92 0.79 0.95 0.98
Precision 0.02 0.008 0.03 0.07
NPV 0.99 0.99 0.99 0.99
F1 score 0.05 0.01 0.07 0.13
Accuracy 0.97 0.98 0.94 0.41
Brier 0.02 0.01 0.05 0.4

AUC = area under the curve, NPV = negative predictive value
The EMS modified early warning score (EMEWS) is evaluated with SBP, 
HR, RR, and AVPU. SBP is scored 1 point if it is under 90 or over 140; HR 
is scored 1 point if it is under 60 or over 100; RR is scored 1 point if it is 
under 10 or over 20; AVPU is scored 1 point if it is Not alert. The total 
score is the sum of contributions from each score component.
Patients with EMEWS values of 0-1 were considered to be at low risk, 
those with EMEWS values of 2-3 at moderate risk, and those with 
EMEWS values of 4 at high risk.

SpO2 values were included as a feature in the predic-

tive model. In MEWS―a common hospital-based score

that predicts rapid change―SpO2 values are not used for

scoring. SpO2 values are used in NEWS, and if SpO2 is

91% or less than 3 points, the maximum score for each

item is added. The presence or absence of oxygen ad-

ministration, which affects SpO2, was also used for scor-

ing, and 2 points were added to the score if oxygen was

administered4. In this study, SpO2 values and need for

oxygen administration were added to the characteristics,

with reference to NEWS. Few studies have examined the

association of SpO2 with the outcomes of trauma pa-

tients, and the results have been inconsistent17: studies of

trauma patients reported that SpO2 was18 and was not19,20

a predictor of mortality upon arrival at hospital.

It is unclear if low SpO2 values are due to hypoxemia

or peripheral circulatory failure, thus preventing accurate

assessment. Physiologically, SpO2 reflects oxygenation

and circulation. However, oxygen saturation values differ

when SpO2 is measured transcutaneously or by arterial

blood gas analysis. A study that measured SpO2 and SaO2

simultaneously in patients admitted to an ICU found a
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discrepancy in mean oxygen saturation values: SpO2 was

94.6% and SaO2 was 95.9%, a difference of 1.3%21. Diver-

gence in SpO2 and SaO2 values is a concern when SpO2

or SaO2 is low. When there is no abnormality, the correla-

tion is strong, so whether hypoxia or shock is the indica-

tor of cardiac arrest progression.

Machine learning was used to obtain accurate results.

MEWS++ is a version of MEWS that uses machine learn-

ing7. It predicts in-hospital cardiac arrest, similar to

MEWS. A previous study reported that a random forest

algorithm yielded higher prediction accuracy than logis-

tic regression (receiver operating characteristic curve: 87.9

vs. 79/187.9)7. In the present study, the random forest

model had a higher predictive accuracy than traditional

logistic regression analysis.

The shock process consists of pre-shock, shock, and

non-compensatory phases22. Because of the compensatory

functions of the organism, SBP and HR may be normal

in the pre-shock and shock phases23. Severe shock is eas-

ily determined, but such compensatory periods are diffi-

cult to identify24. The American College of Surgeons clas-

sifies hemorrhagic shock as a mental status of confusion

when blood loss exceeds 30% (Shock class IV)25. As shock

progresses, hypoxemia and acidosis develop26. Therefore,

in this study, AVPU and SpO2 values may have been im-

portant in predicting cardiac arrest.

Limitations

This study has some limitations. First, it was a retro-

spective observational study, and the data were not col-

lected for the purpose of this study. Many data points

were missing. Data on AVPU and SpO2, which were im-

portant predictors of cardiac arrest, were missing in ap-

proximately 25% of patients in the study. In this study,

multiple imputation was used for missing values. Sec-

ond, we were unable to precisely identify the site of

trauma in this study; however, previous studies have

shown that the most common site of injury that causes

death in trauma patients is the head, followed by the

chest27. We performed a sensitivity analysis by excluding

cause of injury and head injury related to AIS from the

features used in this study. The prediction model yielded

an AUC of 0.95. The results of this sensitivity analysis are

reported in Appendix 3, Supplementary Material (http

s://doi.org/10.1272/jnms.JNMS.2023_90-206). The pre-

sent sensitivity analysis indicates that use of data on

cause of injury and head injury did not significantly af-

fect the accuracy of the prediction model. Third, it was

unknown whether emergency medical technicians (EMTs)

administered IV fluids or performed tracheal intubation,

thoracentesis, or other procedures. Thus, it was unclear

whether patients avoided cardiac arrest because of proce-

dures performed by EMTs.

In the results for the prediction model, the AUC of the

predictive model was 0.95 and the negative predictive

value was 0.99. Patients who did not progress to cardiac

arrest could be identified with high accuracy.

Data Availability

The data analyzed in this study are openly available in

NEMSIS (https://nemsis.org/).
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