
246 J Nippon Med Sch 2023; 90 (3)

―Review―

Thyroid Hormone-Activated Signaling Pathways are Essential

for Development of Intestinal Stem Cells

Kenta Fujimoto, Yuki Shibata and Takashi Hasebe
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Intestinal homeostasis is maintained by strict regulation of stem cell function. In mammals, several sig-

naling pathways, including the formation of stem cell niches, are involved in stem cell regulation. How-

ever, little is known of the molecular mechanisms involved in postembryonic maturation of the verte-

brate intestine, that is, the acquisition of cell renewal systems, including stem cell development and

niche formation. Using thyroid hormone (TH)-dependent intestinal remodeling during amphibian meta-

morphosis as a model to study these mechanisms, we found that several signaling pathways, including

the SHH/BMP4, WNT, Notch, and Hippo pathways, are regulated by TH and involved in stem cell

regulation. In this review, we highlight findings regarding the role of these signaling pathways and dis-

cuss potential future avenues of study. (J Nippon Med Sch 2023; 90: 246―252)
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Introduction

The gastrointestinal tract is an important organ that is re-

sponsible for food digestion and nutrient absorption

throughout an animal’s life, and its homeostasis is

thought to be maintained by elaborate regulatory mecha-

nisms. In the small intestine (hereafter “intestine”) of

adult mammals, epithelial cells are derived from stem

cells (SCs) that express leucine-rich repeat-containing G

protein-coupled receptor 5 (LGR5)1, a typical intestinal

SC (ISC) marker in the crypts of Lieberkühn, and are re-

newed every 3-5 days2. Tissue SCs are maintained in a lo-

cal microenvironment, termed a niche, that regulates

their proliferation and differentiation3,4. Various niche fac-

tors have been identified in the adult mammalian intes-

tine, and their roles in intestinal homeostasis are being

increasingly investigated5,6. However, little is known of

the molecular mechanisms underlying maturation/re-

modeling of the intestine, that is, the acquisition of a cell

renewal system that takes place during the perinatal pe-

riod in mammals, including niche factors and their func-

tions, as well as signaling pathways involved in niche

formation. Elucidation of these mechanisms is of interest

from the perspective of SC and developmental biology,

and is a subject of considerable importance in regenera-

tive medicine and cancer therapy7. Although ISCs de-

rived from fetal epithelium appear when plasma thyroid

hormone (TH) levels reach a peak during intestinal

maturation in mammals8,9, it is difficult to manipulate

uterus-enclosed mammalian embryos that are affected by

maternal factors. To address this limitation, larval-to-

adult intestinal remodeling during amphibian metamor-

phosis controlled by TH serves as a valuable and appro-

priate model10 because it shares characteristics with mam-

malian intestinal maturation11, as described below. It is

also noteworthy that in vivo experiments are easy to con-

duct using free-living amphibian larvae (tadpoles) and

that intestinal remodeling can be experimentally induced

by administering exogenous TH both in vivo and in vi-

tro12.

We used as a model animal the African clawed frog

(Xenopus laevis), which undergoes metamorphosis from a

herbivorous larva to a carnivorous adult13. To adapt to

this dietary change, the gastrointestinal tract is exten-

sively remodeled during metamorphosis in response to

TH14,15, analogous to intestinal maturation in mammals

during a dietary change from milk to solid food16. The in-
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Fig. 1 Schematic illustration showing intestinal remodeling during metamorphosis of X. laevis. A. At 

premetamorphosis (stage 54), the larval intestine consists of larval epithelium surrounded by a 

thin basement membrane and connective tissue. The morphology of the intestine remains essen-

tially unchanged until the end of prometamorphosis (stage 57), except for the size and length of 

the intestine. B. At early metamorphic climax (stage 60), some larval epithelial cells (precursors of 

stem cells: preSCs) dedifferentiate into adult stem cells (ASCs) that actively proliferate during 

metamorphic climax (stage 61-62). The remaining larval epithelial cells are removed by apopto-

sis. The photograph shows a tadpole at stage 61. C. Cells derived from ASCs differentiate to form 

adult epithelium, analogous to the mammalian intestine, by the end of metamorphosis (stage 66). 

These changes are controlled by TH.

testine of pre- and prometamorphic tadpoles (stage 54-

5717), in which plasma TH levels are low, has a simple tu-

bular structure. A single layer of larval epithelial cells

lines the lumen of the intestine, which is surrounded by

a thin basement membrane and thin connective tissue

(Fig. 1A). When plasma TH levels begin to increase18, the

intestine exhibits metamorphic changes. At stage 59, lar-

val epithelial cells begin to undergo apoptosis, and most

of these cells are removed during the metamorphic cli-

max19. At around stage 60 (early metamorphic climax),

some larval epithelial cells (precursors of SCs, or preSCs)

are induced by TH to dedifferentiate into adult epithelial

SCs (ASCs)20, which appear as small roundish islets be-

tween the connective tissue and larval epithelial cells

(Fig. 1B). During the metamorphic climax, the basement

membrane becomes thicker and more permeable, allow-

ing connective tissue cells to readily make contact with

ASCs. Initially composed of one or a few cells, the islets

rapidly enlarge through active proliferation and invagi-

nate into the connective tissue. They then differentiate

into a single layer of adult epithelium, with the progres-

sion of intestinal fold formation by the end of metamor-

phosis at stage 6613 (Fig. 1C). After completion of meta-

morphosis, the intestine acquires a cell-renewal system

along the trough-crest axis of the intestinal fold, similar

to the mammalian system along the crypt-villus axis21,22.

TH binds to its nuclear receptor (TR), forming a het-

erodimer with the 9-cis retinoic acid receptor (RXR). In

the presence of TH, the TR/RXR complex binds to DNA

elements known as TH response elements (TREs) and ac-

tivates the expression of direct TH-responsive genes23―25.

The products of these genes affect downstream gene ex-

pression. Therefore, to clarify the molecular basis of ASC

development during intestinal remodeling, it is impor-

tant to examine TH response genes, regardless of the

mechanism of response to TH. For this purpose, numer-

ous TH response genes, including those encoding signal-

ing molecules, have been identified by using several ap-

proaches26―28. To date, it has been shown that various sig-

naling pathways are regulated by TH in the metamor-
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phosing intestine, including sonic hedgehog (SHH)/bone

morphogenetic protein 4 (BMP4), WNT, Notch, and

Hippo. In this review, we summarize the roles of these

signaling pathways in ASC development and discuss

prospects for future investigations.

SHH/BMP4 Pathway

In the adult mammalian intestine, SHH is expressed

more abundantly in the epithelial cells of the crypt base

than in the villi and has been shown to be involved in

cell proliferation and Paneth and goblet cell develop-

ment29,30. In X. laevis intestine, SHH expression is directly

upregulated by TH in ASCs during metamorphic cli-

max31. Epithelial SHH travels to the connective tissue and

is then received by cells expressing its receptor, PTC132.

These cells also express the SHH effector GLI1 transcrip-

tion factor, which regulates expression of SHH target

genes33. Among them, BMP4 expressed in connective tis-

sue cells signals back to the epithelium and promotes dif-

ferentiation into absorptive cells34,35. Although SHH en-

hances cell proliferation in both epithelial and connective

tissues36, BMP4 does not appear to affect epithelial cell

proliferation but inhibits connective tissue cell prolifera-

tion34.

We recently showed that SHH regulates the expression

of the transcription factor FOXL1, the genomic DNA of

which contains several GLI-binding sites37. In the adult

mammalian intestine, FOXL1 is expressed in subepithe-

lial telocytes, which are mesenchymal cells that are criti-

cal components of the SC niche38. In the X. laevis intes-

tine, connective tissue cells just beneath the islets express

FOXL1, and these cells are ultrastructurally similar to

mammalian telocytes37, suggesting that intestinal telocytes

are evolutionarily conserved among terrestrial verte-

brates.

Canonical and Non-Canonical WNT Pathways

The canonical WNT signaling pathway involving several

WNT ligands39 has important roles in promoting the pro-

liferation of SCs in the adult mammalian intestine, and

its hyperactivation often results in intestinal tumorigene-

sis40. It is unclear which WNT ligands are involved in SC

regulation in the X. laevis intestine. However, we previ-

ously demonstrated that nuclear β-catenin, a hallmark of

active canonical WNT signaling, is prominent in ASCs at

metamorphic climax41, indicating that canonical WNT sig-

naling is activated by TH. In addition, we have experi-

mentally shown that secreted frizzled-related protein 2

(SFRP2), which binds to WNT ligands and receptors and

acts as a modulator42, is essential for WNT signaling41.

CD44 is a major target of WNT signaling and plays

multiple roles, including cell adhesion43,44. It is also a pri-

mary receptor for hyaluronan (HA)45 and is expressed in

the crypt base of the mammalian intestine where ISCs re-

side46. In the X. laevis intestine, CD44 expression is tran-

siently upregulated in ASCs and the connective tissue

cells surrounding them during metamorphic climax41,47.

We have shown that inhibition of HA synthesis results in

failure to generate ASCs47. These results indicate that HA

is an SC niche component that is essential for ASC for-

mation.

Our investigation of the non-canonical WNT/planar

cell polarity (PCP) pathway48,49 focused on WNT5a/recep-

tor tyrosine kinase-like orphan receptor 2 (ROR2) signal-

ing, since both genes have been identified as TH re-

sponse genes by microarray analysis26. Both WNT5a and

ROR2 were transiently upregulated in X. laevis intestine

during metamorphosis. In particular, ROR2 expression is

scattered in the larval epithelium during pre- and pro-

metamorphosis and then becomes specific to ASCs dur-

ing metamorphic climax50. Therefore, we conclude that

ROR2-expressing larval epithelial cells are preSCs des-

tined to dedifferentiate into ASCs through the action of

TH. Critically, we demonstrated that depletion of WNT5a

leads to failure of ASC formation, indicating that WNT5

a/ROR2 signaling is indispensable for preSCs to dediffer-

entiate into ASCs50.

Notch Pathway

In the adult mammalian intestine, Notch signaling regu-

lates the renewal of ISCs and binary cell fate determina-

tion of absorptive and secretory cells that originate from

a common ISC population51―53. Notch ligands delta-like

ligand 1 (DLL1) and DLL4 are required for the mainte-

nance of LGR5-expressing ISCs53. Inhibition of Notch sig-

naling results in loss of the proliferative crypt compart-

ment and conversion of progenitor cells into post-mitotic

goblet cells52,54. In X. laevis intestine, NOTCH1 and DLL1

expression is transiently upregulated in ASCs in response

to TH during metamorphosis. We have experimentally

demonstrated that inhibition of Notch signaling modestly

suppresses the TH-induced upregulation of LGR5, which

suggests that this pathway has a role in ASC develop-

ment. More importantly, Notch inhibition during intesti-

nal remodeling leads to hyperplasia of secretory cells and

reduction of absorptive cells, resembling that observed in

the adult mammalian intestine55. These results suggest

that Notch signaling plays a role in cell fate determina-
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Fig. 2 Summary of signaling pathways involved in SC regulation. The SHH/BMP4, WNT, Notch, and Hippo pathways 

are shown.

tion during the initial formation of ASCs and is evolu-

tionarily conserved.

Hippo Pathway

The Hippo signaling pathway plays a pivotal role in or-

gan size control, regeneration, and tumor suppression56,57.

In the adult mammalian intestine, this pathway has been

reported to be crucial for maintaining normal tissue ho-

meostasis through crosstalk with the signaling pathways

described above58. The effectors of this pathway―the

transcription cofactors YAP and TAZ―are regulated by

the phosphorylation cascade of Hippo signaling. When

Hippo signaling is activated, YAP/TAZ are phospho-

rylated and become inactive. In contrast, when Hippo

signaling is inactive, non-phosphorylated YAP/TAZ

translocate into the nucleus, where they bind to their key

binding partner, the TEAD transcription factor, and pro-

mote target gene expression59,60. YAP is enriched in ISCs

in the adult mammalian intestine61. Disruption of the

Hippo signaling cascade results in disorganized villi and

enlarged crypt structures62,63. In X. laevis intestine during

metamorphosis, the expression of YAP1 is transiently

upregulated in response to TH in ASCs and surrounding

connective tissue cells, similar to that of CD44, suggest-

ing that YAP1 is a WNT target gene64. In addition, YAP1

is localized in the nuclei of some preSCs expressing ROR

2 at stage 59, which suggests the involvement of YAP1 in

dedifferentiation of preSCs into ASCs65. Furthermore, we

have experimentally shown that formation of the YAP-

TEAD complex is required for ASC proliferation65.

Conclusions and Future Directions

The role of signaling pathways in the acquisition of the

cell-renewal system during TH-induced X. laevis intesti-

nal metamorphosis is becoming clearer (Fig. 2). Because

the mechanisms of action of each signaling pathway are,

in many cases, common to vertebrates, findings from

studies of amphibians could be applied to higher verte-

brates, including humans10.

The function of each pathway that we have elucidated

is primarily based on blocking the pathway with an in-

hibitor. To analyze the function of each pathway more

precisely, gene knockout and our recently developed sim-

ple and powerful transgenesis techniques66 would be of

great help. However, if pathways mutually interact,

blocking one could lead to inhibition of another. To ad-

dress this issue, combining an inhibitor of one signaling

pathway with an agonist of another may be worthwhile.
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Alternatively, it may be useful to treat transgenic tad-

poles expressing a factor that inhibits or promotes one

signaling pathway with an agonist or antagonist of an-

other. Using the pharmacological and genetic approaches

described above, we aimed to clarify the contribution

and order of each pathway in ASC formation during TH-

dependent intestinal remodeling. It is also important to

assess the extent of similarity in the mechanisms of stem

cell development and maintenance between frogs and

mammals. We anticipate that future studies using am-

phibians will shed new light on the mechanisms underly-

ing SC development in vertebrates.
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