Distribution of Splenic Arterial Flow and Segmental Spleen Volume for Partial Splenic Arterial Embolization

Junji Ueda¹, Yasuhiro Mamada¹, Nobuhiko Taniai², Masato Yoshioka¹, Akira Matsushita¹, Satoshi Mizutani², Yoichi Kawano³, Tetsuya Shimizu¹, Tomohiro Kanda¹, Hideyuki Takata², Hiroyasu Furuki¹, Yuto Aoki¹, Mampei Kawashima¹, Toshiyuki Irie¹, Takashi Ohno¹, Takahiro Haruna¹ and Hiroshi Yoshida¹

¹Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
²Department of Gastrointestinal Surgery, Nippon Medical School Musashi Kosugi Hospital, Kanagawa, Japan
³Department of Gastrointestinal Surgery, Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan
⁴Department of Surgery, Nippon Medical School Tama Nagayama Hospital, Tokyo, Japan

Introduction: The spleen is a lymphatic organ that manages immune surveillance of the blood, produces blood cells, and helps filter the blood, remove old blood cells, and fight infection. The normal splenic weight is approximately 65-265 g. This study evaluated spleen volume and segmental volume.

Methods: 121 patients who underwent enhanced CT at our center were analyzed. The spleen was divided into upper, middle, and lower segments according to arterial flow area, and the volume of each segment was measured. Patients were classified into two groups as those with and without liver cirrhosis, and differences in the distribution of the segments in these groups was evaluated.

Results: The mean upper, middle, and lower spleen segmental volume ratios were 35.4%, 37.0%, and 27.6%, respectively. In the liver cirrhosis group, the segmental splenic volume ratios for the upper, middle, and lower segments were 34.5%, 38.5%, and 28.0%, respectively, indicating that these ratios remain similar regardless of liver cirrhosis status.

Conclusion: The present findings on segmental spleen volume are useful for estimating infarction volume in cases of partial splenic arterial embolization. (J Nippon Med Sch 2024; 91: 83–87)

Key words: spleen, segmental volume, LC
Materials and Methods
Forty-four consecutive patients underwent PSE between 2014 and 2022, and 77 consecutive patients underwent surgery in our center for hepatobiliary and pancreatic disease between 2019 and 2021. Data from 121 patients who underwent enhanced CT at our centers were analyzed. The spleen was divided into upper, middle, and lower segments, in accordance with arterial flow area, and the volume of each segment was measured. The average spleen weight for a healthy Japanese adult is 62.8 g ±41.5 g for males and 80.7 g±51.8 g for females. We defined splenomegaly as a splenic volume over 200 mL. The diagnostic criteria for liver cirrhosis were pathological findings of liver cirrhosis or CT images showing an irregular liver surface and splenomegaly and swelling of the left lobe of the liver and atrophy of the right lobe of the liver.

This was a retrospective cohort study. We obtained informed consent from all patients studied. Data collection and analysis were performed in accordance with the relevant institutional guidelines and the ethical standards of the Declaration of Helsinki. We obtained ethical approval from the ethics committee of Nippon Medical School Hospital (No. B-2021-459). Consent forms were signed by the patients before the start of the study.

Measurement of Segmental Spleen Volumes
In all cases, no spleen treatment, such as PSE, was performed. Total and segmental spleen volumes were measured with a Synapse Vincent analyzer (Fujifilm Medical Co., Tokyo, Japan). For measurement, delayed-phase images reconstructed at 5-mm intervals were used. After importing pre- and post-PSE images into the analyzer, the splenic artery and regions of noninfarcted and infarcted spleen parenchyma were selected manually, and a region of interest was designated in each slice. We selected the branch of the splenic artery at the splenic hilum and defined the supply area of the inferior polar artery as the lower segment. We also defined the area of the superior polar artery and superior splenic artery as the upper segment. The remaining area was defined as the middle segment. We calculated the volume of each segment by using the analyzer (Fig. 1, 2).

Evaluation Factors
We evaluated age, sex, and laboratory findings for serum total bilirubin (T-bil), prothrombin time (PT%), and platelets (Plts).

Statistical Analysis
Statistical analysis was performed using the statistical software package SPSS, version 16.0 (Chicago, IL, USA). Categorical variables were compared with the χ² test or Fisher’s exact test. A P value of less than 0.05 was considered to indicate statistical significance.

Results
The clinical characteristics of the study participants are shown in Table 1. Seventy-four patients had liver tumors, including hepatocellular carcinoma, intrahepatic cholangiocarcinoma, hilar cholangiocarcinoma, and metastatic liver tumors. The mean upper, middle, and lower segmental volume ratios were 35.4%, 37.0%, and 27.6%, respectively. The mean spleen volume was 358 mL. After determining that 77 (55.4%) patients had liver cirrhosis, the patients were divided into those with liver cirrhosis
and those without liver cirrhosis or splenomegaly (Table 2). There were 67 liver cirrhosis cases. The cause of liver cirrhosis was hepatitis B virus (HBV) in 5 cases, hepatitis C virus (HCV) in 19 cases, alcohol misuse in 21 cases, and nonalcoholic steatohepatitis (NASH) in 11 cases. There were 3 cases of primary biliary cirrhosis (PBC), 1 case of autoimmune hepatitis (AIH) and idiopathic portal hypertension (IPH), and 6 cases of unknown cause. In the cirrhosis group, total spleen volume and the volumes of the 3 segments were significantly larger than the respective values for the non-liver cirrhosis group. However, the segmental splenic volume ratios of the upper, middle, and lower segments were 34.5%, 38.5%, and 28.0%, respectively, indicating that the ratios for the 3 segments were similar in liver cirrhosis. Next, these patients were divided into a splenomegaly group and non-splenomegaly group (Table 3). There were significantly more liver cirrhosis and Child B patients in the splenomegaly group than in the non-splenomegaly group. In addition, platelet count and total bilirubin level were significantly lower in the splenomegaly group.

Discussion

This study examined the segmental volume of the spleen. First, we measured splenic volume and segmental volume in 121 patients. Several studies have reported separating the spleen into lobes and segments on the basis of its arterial supply. However, the splenic artery exhibits multiple variations. Some reports advocate splenic segmental classification based on the origin of the splenic arterial branch. However, others have considered the many variations of the branches. We classified the splenic segments as upper, segment, and lower segments and calculated segmental splenic volume ratios. Next, we determined the difference in segmental volume ratios in patients with and without liver cirrhosis and found that the volumes of the 3 segments were similar in these groups. Splenomegaly is a frequent finding in patients with liver disease, especially in those with cirrhosis and portal hypertension. Portal hemodynamics are probably impor-
Table 3 Clinicopathological findings in patients with and without splenomegaly

<table>
<thead>
<tr>
<th></th>
<th>Splenomegaly (N=69)</th>
<th>No splenomegaly (N=52)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>67.3</td>
<td>68.3</td>
<td>0.621</td>
</tr>
<tr>
<td>Sex (male/female)</td>
<td>50/18</td>
<td>32/20</td>
<td>0.162</td>
</tr>
<tr>
<td>LC (+/-)</td>
<td>55/14</td>
<td>12/40</td>
<td>0.001</td>
</tr>
<tr>
<td>Child-Pugh classification</td>
<td>43/26</td>
<td>51/1</td>
<td>0.001</td>
</tr>
<tr>
<td>Platelet (×10⁴/mL)</td>
<td>9.14</td>
<td>20.1</td>
<td>0.001</td>
</tr>
<tr>
<td>PT (%)</td>
<td>75.2</td>
<td>102</td>
<td>0.001</td>
</tr>
<tr>
<td>T-bil (mg/dL)</td>
<td>1.25</td>
<td>0.73</td>
<td>0.003</td>
</tr>
<tr>
<td>BMI</td>
<td>24.5</td>
<td>21.8</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Conclusion
This is the first report to evaluate segmental splenic volume. The findings will assist in predicting splenic infarction volume in PSE.

Availability of data and materials: The datasets used and analyzed in the current study are available from the corresponding author on reasonable request.

Author contributions: Junji Ueda and Hiroshi Yoshida designed the study and wrote the report. Yasuhiro Mamada, Nobuhiko Taniai, Masato Yoshioka, Akira Matsushita, Satoshi Mizutani, Youichi Kawano, Tetsuya Shimizu, Tomohiro Kanda, Hideyuki Takata, Hiroyasu Furuki, Yuto Aoki, Mampei Kawashima, Toshiyuki Irie, Takashi Ohno, and Takahiro Haruna summarized the clinical data. All authors read and approved the final manuscript.

Supporting foundations: None.

Conflict of Interest: None.

References

(Received, March 4, 2023) (Accepted, July 12, 2023) (J-STAGE Advance Publication, December 8, 2023)