Clinicopathological Characteristics of Everolimus-Associated Interstitial Lung Disease: A Single-Center Consecutive Analysis

Yoshinobu Saito, Yasuhiro Terasaki, Takeru Kashiwada, Toru Tanaka, Hiroyuki Takei, Go Kimura, Yukihiro Kondo, Tetsuro Kawagoe, Akira Matsushita, Rintaro Noro, Yuji Minegishi, Koichiro Kamio, Masahiro Seike and Akihiko Gemma

Department of Pulmonary Medicine and Oncology, Nippon Medical School, Tokyo, Japan
Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
Department of Breast Surgery and Oncology, Nippon Medical School, Tokyo, Japan
Department of Urology, Nippon Medical School, Tokyo, Japan
Department of Gastroenterology, Nippon Medical School, Tokyo, Japan
Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan

Background: Everolimus, a mammalian target of rapamycin inhibitor used as an antineoplastic drug, is associated with a remarkably high incidence of interstitial lung disease (ILD). The clinical and pathological characteristics of ILD caused by everolimus have not been thoroughly investigated; therefore, we aimed to elucidate the features of everolimus-associated ILD.

Methods: We retrospectively reviewed the medical records of patients who received everolimus for cancer treatment at our hospital. Patient backgrounds were compared between the ILD and non-ILD groups. Chest computed tomography (CT), changes in biomarkers, and lung histopathological features were analyzed for ILD cases.

Results: Sixty-six patients were reviewed, and ILD developed in 19. There were no differences in patient demographics between the ILD and non-ILD groups. The severity of ILD was grade 1 (G1) in 9 and grade 2 (G2) in 10 cases. Chest CT showed organizing pneumonia (OP) or a hypersensitive pneumonia pattern. The levels of lactate dehydrogenase, C-reactive protein, Krebs von den lungen-6, and surfactant protein-D (SP-D) at the onset of ILD were significantly higher than those at baseline. Analysis of G1 and G2 ILD subgroups showed a higher SP-D levels in the G2 subgroup. Five patients underwent lung biopsies; all specimens demonstrated alveolitis with lymphocytic infiltration and granulomatous lesions, and some had OP findings.

Conclusions: Everolimus-associated ILD is mild and has a favorable prognosis. Patients with symptomatic ILD were more likely to have higher SP-D levels than those with asymptomatic ILD. Granulomatous lesions are an important pathological feature of everolimus-associated ILD.

Key words: everolimus, interstitial lung disease, KL-6, SP-D, granuloma

Introduction

Drug-induced lung diseases present with a wide variety of clinical manifestations, including interstitial lung disease (ILD), a major type of lung disease. Antineoplastic drugs are the most common causative agents of drug-induced ILD, and the frequency and prognosis of drug-induced ILD differ depending on the drug. Everolimus, an inhibitor of mammalian target of rapamycin (mTOR), was first approved as an antineoplastic agent for renal cell carcinoma (RCC), followed by...
neuroendocrine tumor (NET) and breast cancer (BC). It has been noted that everolimus-associated ILD occurs frequently\(^2\), and the incidence of ILD in pivotal clinical trials of everolimus is reported to be 12-17%\(^3\). In our experience, no other drugs induce ILD at such a high frequency, and we have been careful regarding ILD development when everolimus is used for cancer treatment.

There is great interest regarding the clinical features of everolimus-associated ILD, such as its frequency, severity, and prognosis, as well as the utility of diagnostic biomarkers and pathological findings. Details of biomarkers and pathological features of everolimus-associated ILD are particularly scarce. Therefore, we retrospectively reviewed cases that received everolimus for cancer therapy at our hospital and examined the clinical and pathological characteristics of everolimus-associated ILD.

Materials and Methods

Study Participants and Data Collection

We conducted this single-center, retrospective, observational study of everolimus-associated ILD. Ethical approval for this study was obtained from the ethics committee of the Nippon Medical School Hospital (approval number: B-2022-519).

Data of consecutive patients treated with everolimus for RCC, BC, and NET between January 2011 and March 2022 at Nippon Medical School Hospital were analyzed. Data extracted from the medical records included age, sex, performance status, smoking history, allergic history, pre-existing lung disease, type of tumor, symptoms of ILD, laboratory examination, chest computed tomography (CT), bronchoscopy findings, treatment for ILD, and outcome.

Diagnosis and Evaluation of ILD

We investigated the symptoms, chest radiographs, CT scans, and laboratory data of all participants, and everolimus-associated ILD was diagnosed based on the criteria suggested by Camus et al.\(^8\) Briefly, we evaluated each case carefully, considering the temporal relationship between administration and the onset, the differentiation from similar diseases such as infectious disease, congestive heart failure, and lymphangitic carcinomatosis, and then we diagnosed cases with high confidence as everolimus-associated ILD. Chest CT images of ILD were evaluated and classified into five categories, including nonspecific interstitial pneumonia (NSIP), organizing pneumonia (OP), hypersensitivity pneumonia (HP), diffuse alveolar damage (DAD), and eosinophilic pneumonia according to previous literature\(^9\). ILD severity was graded according to the severity of pneumonitis, as described in the Common Terminology Criteria for Adverse Events version 5.0-JCOG (Japan Clinical Oncology Group). In summary, grade 1 (G1) is asymptomatic, grade 2 (G2) is symptomatic, grade 3 (G3) is severe symptoms, grade 4 is life-threatening, and grade 5 is death\(^10\). ILD outcomes were assessed using clinical courses and chest imaging.

Statistical Analysis

Data for continuous variables are expressed as median (interquartile range). For two-group comparisons of continuous variables, the Wilcoxon signed-rank test was used for paired group comparisons, and the Mann-Whitney U test was used for unpaired group comparisons. Fisher’s exact test was used for two-group comparisons of the categorical variables. Statistical significance was set at \(P<0.05 \). All statistical analyses were conducted using EZR software (Saitama Medical Center, Jichi Medical University, Saitama, Japan), a graphical user interface for R (The R Foundation for Statistical Computing, Vienna, Austria). More precisely, it is a modified version of the R commander designed to add statistical functions frequently used in biostatistics\(^11\).

Results

Incidence of ILD and Clinical Characteristics of the Study Population

Sixty-six patients treated with everolimus for RCC, BC, or NET were included in this study. Pulmonary opacities were observed in 27 of 66 patients during treatment with everolimus. Of these cases, eight were diagnosed with diseases other than ILD, specifically, lymphangitic carcinomatosis (n=3), lung metastasis (n=1), bacterial pneumonia (n=1), pneumocystis pneumonia (n=1), radiation pneumonitis (n=1), and cardiogenic pulmonary edema (n=1). The remaining 19 (28.8%) patients were diagnosed with everolimus-associated ILD.

The median time to ILD onset from the start of everolimus therapy was 92 days (range: 24-383 days). Figure 1 shows the cumulative incidence of ILD, which increases linearly over time.

The clinical characteristics of the study population are summarized in Table 1. Forty-one cases of BC, 16 cases of RCC, and 9 cases of NET (primary tumor site: pancreas 6, lung 2, and gastrointestinal 1) were included. Six cases exhibited fibrotic changes on chest CT scans taken before everolimus treatment. Of these, 4 had slight reticular abnormalities in the subpleural regions of bilateral...
Fig. 1 Cumulative incidence of ILD after the start of everolimus therapy.
ILD, interstitial lung disease.

Table 1 Baseline characteristics of patients who received everolimus therapy

<table>
<thead>
<tr>
<th></th>
<th>Total (n=66)</th>
<th>ILD (n=19)</th>
<th>non-ILD (n=47)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median (IQR)</td>
<td>64 (51.25-72.25)</td>
<td>62 (52-70.5)</td>
<td>64 (51-73)</td>
<td>0.955</td>
</tr>
<tr>
<td>Sex, Male; n (%)</td>
<td>20 (30.3)</td>
<td>6 (31.6)</td>
<td>14 (29.8)</td>
<td>1</td>
</tr>
<tr>
<td>Current or former smoker, n (%)</td>
<td>32 (48.5)</td>
<td>7 (36.8)</td>
<td>25 (53.2)</td>
<td>0.352</td>
</tr>
<tr>
<td>Allergic history, n (%)</td>
<td>21 (31.8)</td>
<td>9 (47.4)</td>
<td>12 (25.5)</td>
<td>0.152</td>
</tr>
<tr>
<td>Tumor, n (%)</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>BC</td>
<td>41 (62.1)</td>
<td>12 (63.2)</td>
<td>29 (61.7)</td>
<td></td>
</tr>
<tr>
<td>RCC</td>
<td>16 (24.2)</td>
<td>5 (26.3)</td>
<td>11 (23.4)</td>
<td></td>
</tr>
<tr>
<td>NET</td>
<td>9 (13.6)</td>
<td>2 (10.5)</td>
<td>7 (14.9)</td>
<td></td>
</tr>
<tr>
<td>ECOG-PS, n (%)</td>
<td></td>
<td>0.316</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>62 (93.9)</td>
<td>19 (100)</td>
<td>43 (91.5)</td>
<td></td>
</tr>
<tr>
<td>≥ 2</td>
<td>4 (6.1)</td>
<td>0 (0)</td>
<td>4 (8.5)</td>
<td></td>
</tr>
<tr>
<td>Pre-existing lung disease, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibrotic changes</td>
<td>6 (9.1)</td>
<td>0 (0)</td>
<td>6 (12.8)</td>
<td>0.171</td>
</tr>
<tr>
<td>Pulmonary metastasis</td>
<td>29 (43.9)</td>
<td>7 (36.8)</td>
<td>22 (46.8)</td>
<td>0.584</td>
</tr>
<tr>
<td>Emphysema</td>
<td>6 (9.1)</td>
<td>1 (5.3)</td>
<td>5 (10.6)</td>
<td>0.664</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td>13 (19.7)</td>
<td>5 (26.3)</td>
<td>8 (17.0)</td>
<td>0.496</td>
</tr>
<tr>
<td>Laboratory data, median (IQR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WBC (/μL)</td>
<td>4,600 (3,550-6,475)</td>
<td>4,300 (3,300-5,900)</td>
<td>4,700 (3,800-6,600)</td>
<td>0.661</td>
</tr>
<tr>
<td>LDH (U/L)</td>
<td>202.5 (184.25-249.5)</td>
<td>198 (187-237.5)</td>
<td>205 (183.5-235)</td>
<td>0.810</td>
</tr>
<tr>
<td>CRP (mg/dL)</td>
<td>0.26 (0.0825-0.96)</td>
<td>0.20 (0.0707-0.76)</td>
<td>0.27 (0.09-0.94)</td>
<td>0.707</td>
</tr>
<tr>
<td>Alb (g/dL)</td>
<td>4.1 (3.7-4.4)</td>
<td>4.3 (3.85-4.5)</td>
<td>4.0 (3.7-5.2)</td>
<td>0.196</td>
</tr>
<tr>
<td>eGFR (mL/min/1.73 m²)</td>
<td>63 (54-77.75)</td>
<td>63 (49.5-73)</td>
<td>67 (54-79)</td>
<td>0.470</td>
</tr>
<tr>
<td>KL-6 (U/mL)</td>
<td>525.8 (295.225-1,531.5)</td>
<td>405.2 (265.0-1,462.45)</td>
<td>595.1 (329.325-1,531.5)</td>
<td>0.737</td>
</tr>
<tr>
<td>SP-D (ng/mL)</td>
<td>45.2 (21.75-78.1)</td>
<td>38.5 (25.85-55.2)</td>
<td>46.0 (20.675-91.4)</td>
<td>0.484</td>
</tr>
</tbody>
</table>

IQR, interquartile range; BC, breast cancer; RCC, renal cell carcinoma; NET, neuroendocrine tumor; ECOG-PS, Eastern Cooperative Oncologic Group Performance Status; WBC, white blood cells; LDH, lactate dehydrogenase; CRP, C-reactive protein; Alb, albumin; eGFR, estimated glomerular filtration rate; KL-6, Krebs von den lungen-6; SP-D, surfactant protein-D.

lower lungs and 2 had subpleural fibrotic changes confined to a narrow area in the right upper lobe, which was caused by tangential irradiation for BC. Age, sex, smoking history, allergic history, tumor type, Eastern Co-
Fig. 2 Chest CT images of the ILD cases.
A) Bilateral ground-glass opacities and focal areas of consolidation are mainly in the peribronchial and subpleural regions, representing the OP pattern. B) Patchy ground-glass opacities in bilateral lungs indicate the HP pattern. C) Reticular shadows superimposed on mild ground-glass opacities in the bilateral basal lungs are consistent with the NSIP pattern.

ILD, interstitial lung disease; CT, computed tomography; OP, organizing pneumonia; HP, hypersensitivity pneumonia; NSIP, nonspecific interstitial pneumonia.

operative Oncology Group-Performance Status, pre-existing lung diseases, and baseline laboratory data were not significantly different between the ILD and non-ILD groups.

Severity and Subjective Symptoms of ILD

Among the 19 ILD cases, 9 were of G1, 10 were of G2, and none were G3 or higher. Regarding ILD severity according to tumors, four cases of G1 ILD and one case of G2 ILD developed in patients with RCC. Four cases of G1 ILD and eight cases of G2 ILD developed in patients with BC. In addition, one patient with pancreatic NET developed G1 ILD, and one with pulmonary NET developed G2 ILD. No significant differences in patient background were observed between G1 and G2 ILD patients.

Various subjective symptoms were observed in patients with G2 ILD. Cough was observed in 10 patients, of which 6 had a dry cough, and 4 had a productive cough. In addition, dyspnea was observed in six cases, fever in four cases, and malaise in one case.

Radiographical Findings

Chest CT findings at the time of ILD diagnosis showed bilateral opacities in 16 cases and unilateral opacities in 3 cases. Regarding ILD pattern classification, there were 10 cases of the OP pattern, 8 cases of the HP pattern, and 1 case of the NSIP pattern. There was no difference in CT pattern between G1 and G2 ILD. Figure 2 shows the representative CT scans for each pattern.

Biomarkers Associated with ILD

Figure 3A compares white blood cell count, lactate dehydrogenase (LDH), C-reactive protein (CRP), Krebs von den lungen-6 (KL-6), and surfactant protein-D (SP-D) levels between the baseline and at the ILD onset. The LDH, CRP, KL-6, and SP-D levels at the onset of ILD were significantly higher than those at baseline (P=0.0204, P=0.0000305, and P=0.00836, respectively). Serum KL-6 level could be elevated in BC patients as a tumor marker, and subgroup analyses were also conducted. The KL-6 levels were significantly higher at the onset of ILD in both BC and non-BC groups (P=0.00391 and P=0.01563, respectively; Supplementary Fig. 1: https://doi.org/10.1272/jnms.2024_91-211).

Furthermore, we examined the relationship between the severity at the onset of ILD and these biomarkers. At the onset of ILD, the level of WBC, LDH, and CRP were not significantly different between G1 and G2 ILD cases [4,300 (3,400-5,100) vs. 4,350 (3,725-5,025)/μL, P = 0.902; 310.5 (239.5-395.75) vs. 321.0 (301.0-348.0) U/L, P = 0.815; 1.545 (0.910-3.4475) vs. 1.000 (0.595-3.7850) mg/dL, P = 0.778, respectively]. On the other hand, the level of SP-D was significantly higher in G2 than in G1 ILD cases [126.75 (104.375-140.825) vs. 57.20 (24.175-100.375) ng/mL, P = 0.0499], and analysis by severity revealed that G2 ILD cases had significantly higher SP-D levels at the onset of ILD compared to baseline (P=0.0156), while no significant difference was observed in G1 ILD cases (P=0.469) (Fig. 3B). Regarding KL-6, G2 ILD cases included more BC patients than G1 ILD, and some of these patients could have elevated KL-6 as a tumor marker. Therefore, comparisons between G1 and G2 ILD cases were not conducted.

Bronchoalveolar Lavage and Transbronchial Lung Biopsy Findings

Bronchoscopy was performed for diagnosis in five cases. All patients showed a marked increase in lymphocyte fractionation in bronchoalveolar lavage (BAL) fluid analysis. Eosinophil fractions mildly increased in some patients. The CD4/CD8 ratio of lymphocytes in BAL fluid ranged from 2.0 to 7.2, and four out of five cases
Fig. 3 A) Comparison of WBC, LDH, CRP, KL-6, and SP-D levels between baseline and at the onset of the ILD. B) Comparison of SP-D levels between baseline and at the onset of the ILD in G1 and G2 ILD subgroups.
WBC, white blood cells; LDH, lactate dehydrogenase; CRP, C-reactive protein; KL-6, Krebs von den lungen-6; SP-D, surfactant protein-D; ILD, interstitial lung disease.

<table>
<thead>
<tr>
<th>Case No.</th>
<th>TCC (×10⁵/mL)</th>
<th>M (%)</th>
<th>Lym (%)</th>
<th>Neu (%)</th>
<th>Eos (%)</th>
<th>CD4/CD8</th>
<th>CT pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.9</td>
<td>8</td>
<td>80</td>
<td>0</td>
<td>12</td>
<td>2</td>
<td>OP</td>
</tr>
<tr>
<td>2</td>
<td>12.7</td>
<td>32.5</td>
<td>67.5</td>
<td>0</td>
<td>0</td>
<td>5.4</td>
<td>NSIP</td>
</tr>
<tr>
<td>3</td>
<td>17.5</td>
<td>6</td>
<td>94</td>
<td>0</td>
<td>0</td>
<td>4.8</td>
<td>OP</td>
</tr>
<tr>
<td>4</td>
<td>N.A.</td>
<td>2</td>
<td>96</td>
<td>0</td>
<td>2</td>
<td>7.2</td>
<td>OP</td>
</tr>
<tr>
<td>5</td>
<td>3.8</td>
<td>13</td>
<td>66</td>
<td>6</td>
<td>15</td>
<td>4.5</td>
<td>HP</td>
</tr>
</tbody>
</table>

TCC, total cell count; M, macrophages; Lym, lymphocytes; Neu, neutrophils; Eos, eosinophils; N.A., not assessed.

showed an elevation of the ratio (Table 2).

Histopathological findings of the transbronchial lung biopsy specimens demonstrated cellular and myxomatous alveolitis with infiltration of inflammatory cells,
mainly lymphocytes. All cases presented with either granuloma formation or granulomatous changes in the lesion (Fig. 4). Two cases were accompanied by intra-alveolar polypoid fibrosis and collagen globules, which suggested OP. Figure 5 shows histopathological images of OP findings as a representative case.

Treatment and Outcomes of ILD

Corticosteroids were administered to 6 of 10 G2 ILD cases and 1 of 9 G1 ILD cases; the other cases were untreated. The corticosteroid administered was 0.5 mg/kg of prednisolone in each case. The median duration of corticosteroid treatment was 27 (22-57.5) days. The outcomes were as follows: ILD recovered in 18 cases and did not recover in 1 case. The patient who did not recover died of cancer progression shortly after the ILD diagnosis. In one G1 and six G2 cases, everolimus was resumed after the interruption [the median interruption period was 32 (20.5-42.5) days], but no recurrence of ILD was observed. Five patients with G1 ILD continued receiving everolimus without worsening the severity. One patient with G2 ILD had very mild symptom and continued to receive everolimus without interruption. However, the ILD did not worsen and recovered soon after discontinuation of everolimus due to progressive disease. In a total of 6 patients, 3 in G1 and 3 in G2, everolimus was permanently discontinued at the onset of ILD because of progressive disease or anorexia.

Discussion

Herein, ILD developed in 28.8% of patients treated with everolimus. The incidence was higher than that in clinical trials of everolimus, such as the RECORD-1, RADIANT-3, and BOLERO-2 studies; however, it was similar to the incidence of ILD in the Japanese population in each study. It has been reported that Japanese people are more likely to develop drug-induced ILD with several drugs, which might be true for everolimus-associated ILD. The severity of ILD was mild, and no one developed G3 or higher ILD in our study population. In clinical trials, 3-5% of patients developed G3 or higher ILD. Although the reason for the absence of severe cases in our study was unknown, it may have been because of the small number of cases herein. The time to onset of ILD ranged widely from 24 to 383 days, and the cumulative incidence curve showed a linear increase, suggesting that everolimus-associated ILD did not tend to occur at a particular period, and that the development of ILD should be monitored throughout everolimus therapy. We compared the background factors between the ILD and non-ILD groups; however, no differences were found between the two groups. Therefore, we could not estimate the risk factors for ILD development in patients treated with everolimus. Pre-existing ILD is a well-known risk factor for drug-induced lung injury. Six patients had pre-existing fibrotic changes in the lungs before treatment with everolimus. However, none of them developed everolimus-induced ILD during their clinical course. The stable clinical course despite everolimus administration may be attributed to the mild or localized nature of fibrotic changes in these cases. However, due to the small number of cases in this study, it is not possible to conclude that everolimus is safe for cases with mild pre-existing fibrotic changes. Moreover, everolimus has been shown to worsen the progression of pulmonary fibrosis in a clinical trial of advanced pulmonary fibrosis. Therefore, administration of everolimus should be avoided in cases with advanced pulmonary fibrosis. Concerning the management of ILD, the package insert for everolimus allows treatment to continue in the case of G1 ILD and resume treatment after the ILD has resolved in the case of G2 ILD. These guidelines were reconfirmed as safe in this study; however, in such cases, the continuation of everolimus for G1 ILD and re-administration after the resolution of G2 ILD should be monitored carefully.

Biomarkers used to diagnose drug-induced ILD include complete blood count, LDH, CRP, and alveolar epithelial cell markers such as KL-6 and SP-D. KL-6 and SP-D are derived from type II alveolar epithelial cells, and their serum levels are higher in patients with ILD than in healthy participants. In this study, the levels of nonspecific inflammatory markers LDH and CRP, as well as alveolar epithelial markers KL-6 and SP-D, were elevated at the onset of ILD. We examined the relationship between ILD severity and SP-D levels; the levels at the onset of ILD was higher in G2 ILD cases than in G1 ILD cases for SP-D. Furthermore, from baseline to the onset of ILD, SP-D levels increased significantly in G2 ILD cases, but no significant increase was observed in G1 ILD cases. There may be a correlation between the degree of lung injury and the presence or absence of symptoms. In addition, if the lung injury is severe, more SP-D released from the damaged type II alveolar epithelial cells could flow into the blood vessels, resulting in increased serum levels of SP-D. KL-6 is a useful biomarker for diagnosing ILD; however, it is also a tumor marker for BC patients, especially in advanced cases. Therefore, KL-6 levels could be influenced by tumor status and should be interpreted with caution. In the case of BC, chest CT scans,
Features of Everolimus-Associated ILD

Fig. 4 TBLB specimens from five patients with everolimus-associated ILD.
A), C), E), G), and I) shows middle-power views of Case No. 1, 2, 3, 4, and 5, respectively. The areas enclosed by black rectangles indicate granulomatous lesions (green star) as epithelioid histiocyte accumulation, and their high-magnification views are shown on the right (B, D, F, H, and J). Scale bars = 100 μm.
ILD, interstitial lung disease.
tumor marker changes, and results of physical examination and breast ultrasonography by a breast surgeon are checked. From this information, we determine whether the BC is progressing or not, and ultimately determine whether the increase in KL-6 value is due to tumor worsening or ILD. This is the process of diagnostic work-up for evaluating KL-6 levels in BC cases. When using KL-6 to monitor ILD, baseline KL-6 levels should be measured, and if KL-6 levels rise above baseline, the possibility of tumor progression, as well as ILD development, should be considered.

The CT images of drug-induced ILD are often recognized as patterns. In other words, it is expressed as patterns similar to those of other ILDs, such as OP, NSIP, eosinophilic pneumonia, HP, and acute interstitial pneumonia/DAD, rather than CT findings, such as ground-glass opacity, consolidation, and nodules. In this study, most patients had OP or HP patterns, which are generally considered responsive to corticosteroids and have a better prognosis; the DAD pattern was not observed. DAD, the pathology of acute respiratory distress syndrome or acute interstitial pneumonia, is a serious condition with a high mortality rate. Studies of Japanese post-marketing surveillance for some tyrosine kinase inhibitors and an immune checkpoint inhibitor investigated the CT pattern and prognosis in ILD and showed a very high mortality rate ranging from 53 to 75% in cases with a DAD pattern.

The CT patterns of everolimus-associated ILD show mainly OP, NSIP, and HP patterns, and the DAD pattern is rare. It is considered one of the factors for a favorable prognosis.

ILD is a common adverse event associated with everolimus treatment in cancer patients. However, there are very few detailed reports on the histopathological findings, and the pathological features of everolimus-associated ILD have not yet been fully elucidated. Thirteen reports mentioned the pathological findings of everolimus-associated ILD, of which 10 were single-case studies, 2 were 2-case studies, and 1 was a 3-case study.

Summarizing these reports of 17 cases, alveolitis with lymphocytic infiltration and OP were the main pathological findings, except for one case of diffuse alveolar hemorrhage. In particular, OP findings were reported in 8 out of 17 cases. Transbronchial lung biopsy findings represent only a biopsied part and may not reflect the complete histopathological changes. In
Features of Everolimus-Associated ILD

Although this minimized the selection bias within the institution, there may be other potential biases. For example, because the frequency of chest CT scans was not standardized, there may have been ILD cases that had not been detected.

Regarding the issue of missing data, only a small number of missing data were found regarding the biomarkers analyzed in this study. However, it is essential to acknowledge that missing data could potentially impact the study results, and caution should be exercised when interpreting the findings. Second, the number of cases investigated in this study was 66, and the sample size was small. In addition, only five patients underwent lung biopsy, which is a small number to elucidate the pathological features. However, the fact that granulomatous lesions were observed in all cases suggests that it may be a pathological characteristic of everolimus-associated ILD; further confirmation in future studies is needed. To overcome these limitations, well-designed prospective observational studies with sufficient cases are required.

In conclusion, everolimus frequently causes ILD in patients undergoing cancer treatment; however, most cases are mild and have a favorable prognosis. Granulomatous lesions are an important characteristic pathological feature of everolimus-associated ILD, in addition to cellular alveolitis with lymphocytic infiltration and occasional OP findings. These pathological features of ILD are likely related to good steroid responsiveness and a favorable clinical course.

Acknowledgments: We would like to thank all physicians and medical staff who were engaged in the treatment and care for the study participants. We would like to thank Editage (www.editage.com) for English language editing.

Funding: This research did not receive specific grants from public, commercial, or not-for-profit funding agencies.

Conflict of Interest: All authors have no conflict of interest with regards to this paper.

References
Features of Everolimus-Associated ILD

(Received, August 4, 2023)
(Accepted, November 22, 2023)
(J-STAGE Advance Publication, January 16, 2024)