

Circulatory Management with Impella Assistance during Off-Pump Coronary Artery Bypass Grafting for Cardiogenic Shock: A Report of Two Cases

Makiko Yamamoto¹, Yuka Ino¹, Keisuke Mori², Yuji Maruyama³,
Yosuke Ishii³, Masashi Ishikawa¹ and Atsuhiro Sakamoto¹

¹Department of Anesthesiology and Pain Medicine, Nippon Medical School, Tokyo, Japan

²Department of Anesthesiology, Homecare Clinic Denenchofu, Tokyo, Japan

³Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan

The combination of initial Impella therapy, Impella-supported coronary artery bypass grafting (ISCAB), and postoperative Impella therapy providing antegrade perfusion in myocardial infarction can prove effective. We investigated strategies for Impella stabilization in ISCAB, particularly during peripheral circumflex branch anastomosis. Case 1 was a 70-year-old man treated with an Impella 2.5, followed by urgent ISCAB on the day of hospitalization, for a left main trunk lesion. Use of an apical suction device to position the heart to expose an obtuse marginal branch caused Impella obstruction by applying suction to the left ventricular wall, interrupting revascularization; however, one revascularization was achieved. Case 2 was a 79-year-old man treated with an Impella CP for a three-vessel lesion until ISCAB 4 days later. The Impella was stabilized with appropriate positioning by adjusting the bed angle, minimal heart compression with a deep pericardial stitch without pulling on the cardiac apex, and sufficient preload, even during posterolateral branch anastomosis. Four revascularizations were eventually achieved. Multiple innovations to prevent Impella contact with the left ventricle as described herein improve ISCAB safety, particularly during peripheral circumflex branch anastomosis.

(J Nippon Med Sch 2025; 92: 474-479)

Key words: cardiac surgery, cardiogenic shock, Impella, coronary artery bypass grafting, myocardial infarction

Introduction

Cardiogenic shock (CS) is associated with a mortality rate of 50-60%, with acute myocardial infarction (AMI) being the most common cause of CS¹. The risk of cardiovascular complications in percutaneous coronary intervention increases in patients with three-vessel lesions, left main trunk (LMT) lesions, lesions at the entrance of the left anterior descending artery (LAD), or low ejection fraction². Predictors of conversion to on-pump coronary artery bypass grafting (CABG) from off-pump CABG include low ejection fraction, congestive heart failure, Canadian Cardiovascular Society class 3/4 angina, and emergency surgery³. Use of a circulatory assist device such as the Impella (Abiomed Japan, Tokyo, Japan) can

be beneficial before coronary intervention in CS cases⁴. The Impella is a pump catheter-type device that provides antegrade perfusion, reducing the risk of subendocardial ischemia due to AMI⁵.

Various reports have described the effectiveness of Impella-supported CABG (ISCAB) and additional perioperative Impella therapy^{6,7}. However, ISCAB has the major disadvantage of destabilizing the Impella during peripheral circumflex branch anastomosis. We report on some difficulties with successful Impella stabilization during ISCAB.

Correspondence to Makiko Yamamoto, Department of Anesthesiology and Pain Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan

E-mail: m-yamamoto@nms.ac.jp

https://doi.org/10.1272/jnms.JNMS.2025_92-609

Journal Website (<https://www.nms.ac.jp/sh/jnms/>)

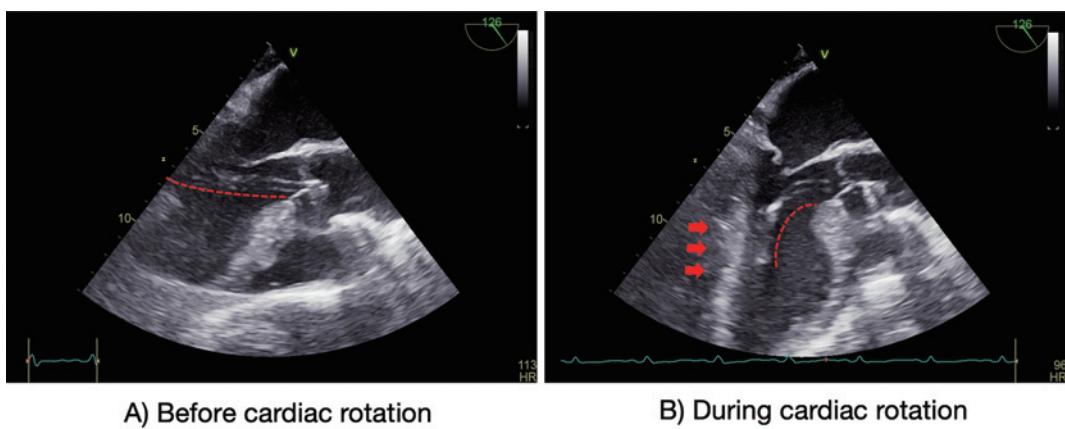


Fig. 1 Transthoracic echocardiography of Impella positioning in Case 1

A) Before heart positioning, the Impella 2.5 was not bent (dashed line) and was working normally. B) Immediately after heart positioning to obtain a view of the obtuse marginal area, the Impella 2.5 showed significant bending along the dashed line, touching the left ventricle, as indicated by the arrows, and becoming obstructed.

Case Report

Ethics approval and consent to participate

In our institution, publication of case reports is exempted from ethics committee approval.

Consent for publication

Written informed consent was obtained from both patients for publication of this case report and accompanying images.

Case 1

A 70-year-old man with a history of hypertension and diabetes presented with sudden respiratory distress that woke him from sleep. Congestive heart failure was identified, and ST-segment elevation myocardial infarction was diagnosed based on ST-segment elevation of the precordial leads (V1-3). Mechanical ventilation and administration of norepinephrine 0.2 μ g/kg/min were started for CS. An LMT lesion (#5: 90%) was responsible, with no significant stenosis in the right coronary artery. Extensive calcification in wide areas of the aorta and occlusion of the left common iliac artery and stenotic right femoral artery interfered with insertion of an intra-aortic balloon pump and introduction of veno-arterial extracorporeal membrane oxygenation. An Impella 2.5 (maximum flow rate, 2.5 L/min; canula diameter, 12 Fr) was therefore introduced. Stenotic calcification of the LMT lesion was too severe to address with percutaneous coronary intervention. Because of the severe calcification in the ascending aorta, the cardiovascular surgeon suggested urgent IS-CAB without cardiopulmonary bypass. The initial goal was LAD revascularization, and the obtuse marginal branch was scheduled for additional treatment. On entry to the operating room, heart rate was 125 beats/min and

mean atrial pressure was 95 mm Hg. Oxygen saturation of the central vein (ScvO_2) with the Impella (2.5 L/min) in place was 79%. Transesophageal echocardiography (TEE) revealed an ejection fraction of 35% with no significant valvular disease. Anesthesia was induced with 0.5% sevoflurane and 50 mg of rocuronium, and the concentration was adjusted according to the hemodynamics with sevoflurane up to 1.5% and additional fentanyl. During aorta-saphenous vein graft (SvG)-LAD anastomosis, the Impella achieved stable conditions with a heart rate of 90-100 beats/min, mean atrial pressure >65 mm Hg and regional oxygen saturation (rSO_2) >70% using dobutamine 3 μ g/kg/min. However, use of an apical suction device to position the heart to expose an obtuse marginal branch area caused Impella obstruction. TEE examination showed the Impella touching and applying suction to the wall of the elongated and twisted left ventricle (LV) (Fig. 1). Mean arterial pressure dropped sharply to <50 mm Hg and heart positioning was abandoned. After three attempts and interruptions of heart positioning, ScvO_2 dropped to 59%. Revascularization of the obtuse marginal branch was canceled, and revascularization of the LAD alone was finally achieved with onlay-patch grafting. The duration of surgery was 5 h 34 min, the duration of anesthesia was 7 h 21 min, the amount of crystalloid fluid administered was 8,750 mL, the volume of collected and returned blood was 900 mL, the amount of red blood cells transfused was 1,680 mL, the amount of fresh frozen plasma transfused was 720 mL, urine output was 650 mL, and water balance was 8,430 mL. Impella therapy was continued postoperatively. On postoperative day 1, peripheral ischemia

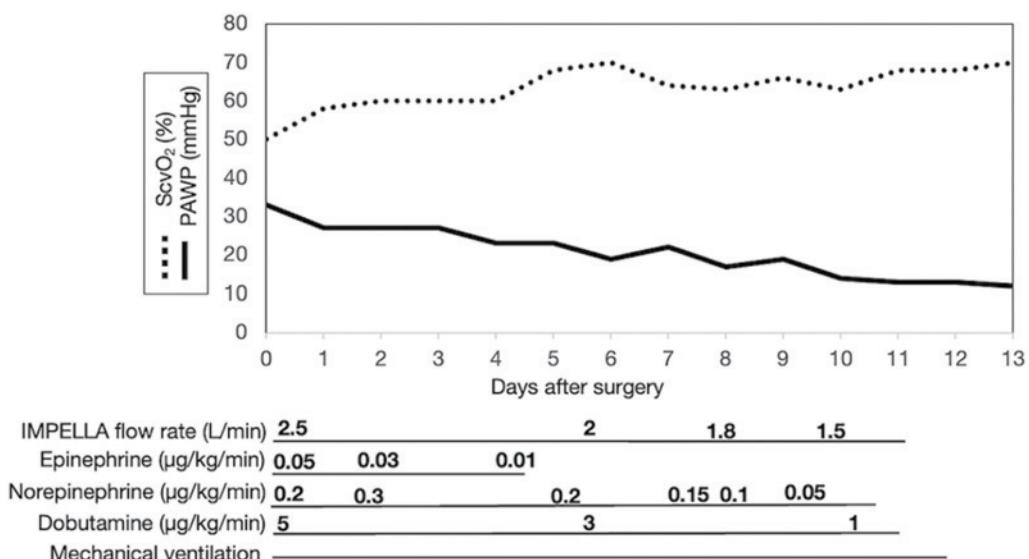


Fig. 2 Postoperative course in Case 1

The solid line shows pulmonary artery wedge pressure, expressed in millimeters of mercury. The dashed line shows oxygen saturation of the central veins (ScvO₂) sampled from the central venous catheter, expressed as a percentage.

caused by Impella insertion required a bypass from the Impella circuit. Pulmonary artery wedge pressure (PCWP) gradually improved with stabilized ScvO₂ during Impella therapy (Fig. 2). Impella therapy was withdrawn 11 days postoperatively and the tracheal tube was removed 12 days postoperatively. The patient was finally able to walk independently and was discharged 53 days after surgery.

Case 2

A 79-year-old man with a history of hypertension, hyperuricemia, and pulmonary emphysema complained of worsening chest pain from 2 days before hospitalization. He presented with congestive heart failure and was diagnosed with ST-segment elevation myocardial infarction in the inferior leads after transfer to our hospital. Mechanical ventilation and administration of norepinephrine were started, after which Impella CP (maximum flow rate, 3.7 L/min; canula diameter, 14 Fr) was introduced for CS with an ScvO₂ of 42% and a PaO₂/FiO₂ ratio of 60. The three-vessel lesion (#1: 50%; #2: 90%; #4 posterior descending branch: 90%; #6: 90%; #7: 99%; second diagonal branch: 99%; #11: 99%; #13: 99%; #12: 90%) with a SYNTAX score of 41 required CABG, although coronary perfusion had already resumed⁸. Taking Impella therapy for control of heart failure as a “bridge to therapy” and considering that IS CAB would be preferable to CABG using cardiopulmonary bypass as a means of reducing blood loss, the cardiovascular surgeon determined that optimal timing for surgery was the fourth day after hospitaliza-

tion, when the patient had recovered from CS. Preoperative Impella therapy with a flow rate of 3.4 L/min improved mean PCWP from 28 mm Hg to 9 mm Hg, improved ScvO₂ from 42% to 60%, and reduced the dose of norepinephrine required from 0.13 µg/kg/min to 0.03 µg/kg/min on the day of operation. On entering the operating room, heart rate was 75 beats/min, mean atrial pressure was 85 mm Hg, and rSO₂ was 58%. Anesthesia was induced with 1.3% sevoflurane, 100 µg of fentanyl, and 50 mg of rocuronium and maintained with 1% sevoflurane, remifentanil 0.1-0.25 µg/kg/min, and fentanyl 25 µg/h. TEE revealed an ejection fraction of 40% and moderate mitral valve regurgitation. The Impella was stable with a flow rate of 3.9 L/min, a heart rate of 70-80 beats/min, and mean atrial pressure >65 mm Hg during left internal thoracic artery-LAD anastomosis. We attempted to stabilize the Impella during anastomosis, given our previous experience with Case 1. During the aorta-SvG-first diagonal branch-posterolateral branch-right posterior descending branch anastomosis, the surgical bed was kept in a head-down position with fine adjustment to right-down inclination to facilitate vascular anastomosis. Heart positioning was performed using a deep pericardial stitch with minimal compression and no pulling on the cardiac apex. The shape of the LV and Impella were kept unbent by providing sufficient preload (Fig. 3). The Impella remained stable throughout all anastomosis procedures, with no drop in mean atrial pressure from >60 mm Hg, ScvO₂, or rSO₂ using norepinephrine at

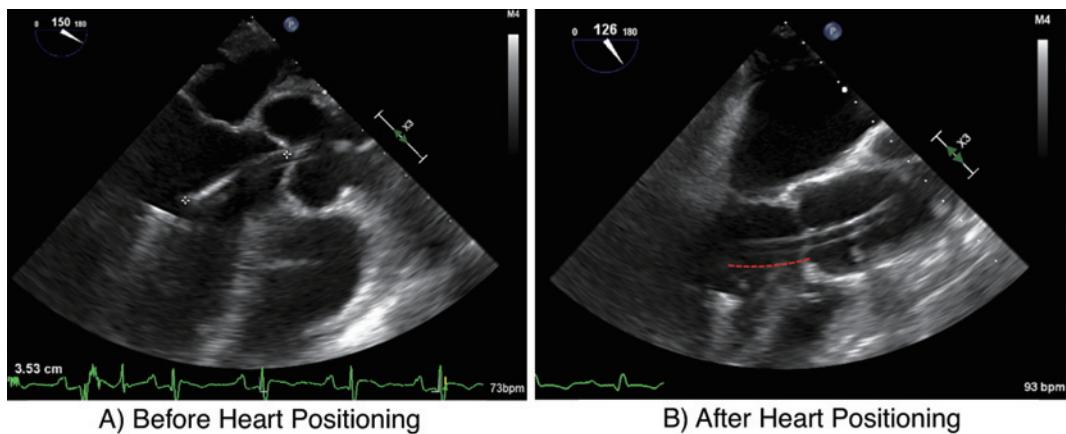


Fig. 3 Transthoracic echocardiography of Impella positioning in Case 2

A) Before heart positioning, the Impella CP was not bent and was working normally. The two asterisks were left on the display for distance measurement. B) After heart positioning to obtain a view of the circumflex area, the Impella CP showed no significant bending (along the dashed line) and was stabilized.

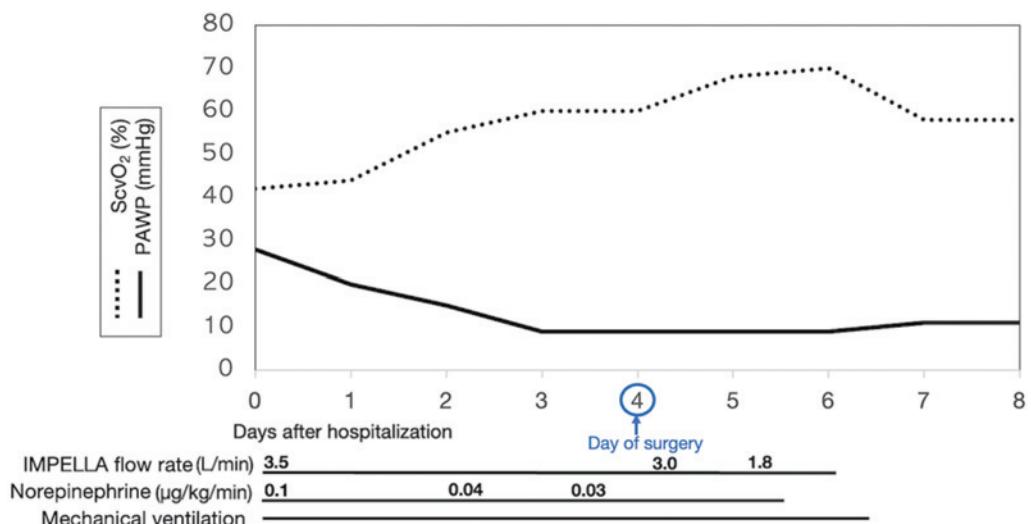


Fig. 4 Postoperative course in Case 2

The solid line shows pulmonary artery wedge pressure, expressed in millimeters of mercury. The dashed line shows oxygen saturation of the central veins (ScvO₂) sampled from the central venous catheter, expressed as a percentage.

a maximum dose of 0.08 µg/kg/min. Reduction of Impella flow was required only when punching out the aorta. The duration of surgery was 5 h 55 min, the duration of anesthesia was 7 h 30 min, the volume of crystalloid fluid was 8,450 mL, the amount of blood collected and returned was 647 mL, the amount of red blood cells transfused was 2,240 mL, the amount of fresh frozen plasma transfused was 1,680 mL, urine output was 1,200 mL, and water balance was 6,985 mL. Impella therapy was withdrawn on postoperative day 2. The tracheal tube was removed on postoperative day 4 (Fig. 4). However, aspiration pneumonia required respiratory support on postoperative day 39. Patient status improved with

tracheostomy and additional antibiotic therapy. The patient was ultimately weaned from respiratory support with closure of the tracheal port. He was able to walk independently and discharged 96 days after surgery.

Discussion

In these cases, IS CAB was performed for CS in patients who underwent additional perioperative Impella therapy as a bridge to therapy, followed by postoperative Impella therapy as a bridge to recovery. In Case 1, the Impella could not be stabilized in circumflex branch anastomosis. IS CAB surgery has been reported in which right coronary artery and ramus intermedius revascularization

were achieved with transfemoral Impella CP, which would not require heart positioning to expose a posterolateral area⁷. In another case, IS CAB including aorta-SvG-posterolateral branch anastomosis was attempted, but Impella obstruction required a reduction in flow rate through the Impella⁹. A method of managing IS CAB, especially during heart positioning to expose a posterolateral circumflex branch, has not been established. In CS cases, reducing Impella support during heart positioning for revascularization requires extreme caution. Strategies for Impella stabilization in IS CAB during peripheral circumflex anastomosis have not been reported previously.

For Impella stabilization in IS CAB, the Impella must be kept in an appropriate position. During heart positioning, the wall of the elongated and narrowed LV can come into contact with the Impella, which is immediately detectable on TEE monitoring. Our experience with Case 1 suggests that the following measures may have been useful in stabilizing the Impella. First, adequate head-down positioning of the bed could have helped maintain sufficient preload, and right-down inclination of the bed could have prevented excessive folding of the LV. Second, the apical suction device used for heart positioning may have pulled excessively on the cardiac apex, causing LV elongation, rigidity, and narrowing, especially during circumflex branch anastomosis¹⁰. Third, sufficient preload is required to avoid LV narrowing. In off-pump CABG, preload during anastomosis is generally limited, and stable cardiac output is maintained using cardiovascular agonists instead. However, sufficient preload can provide a sufficient flow rate in IS CAB, allowing the heart to “rest” under minimal cardiovascular agonists. These innovations enabled Impella stabilization during anastomosis, including to the farthest area supplied by the circumflex branch, in Case 2. If they were not effective, it may have become necessary to reduce the flow rate of Impella to avoid the need for suction of the LV, as has been reported⁹. However, since stroke volume and ejection fraction significantly decrease during heart positioning to expose a circumflex branch, conversion to on-pump surgery may be considered at that time, especially for CS cases¹⁰. Moreover, the possibility that Impella use may increase bleeding during anastomosis should be considered. It should be noted that obstruction of the right ventricular outflow tract could result in the Impella accelerating the collapse of the LV and exacerbating enlargement of the right ventricle, with a sudden jump in central venous pressure. Acute right heart failure or right coronary ischemia during snare may also disable IS CAB

in a similar manner. In such cases, temporary pacing, inotropic agents, and preparation for conversion to on-pump surgery are required.

Selection of IS CAB for CS cases requires careful consideration of the potential advantages over conventional CABG. Cardiopulmonary bypass carries risks such as hemodilution requiring additional transfusion, stroke, postoperative atrial fibrillation, and aortic injury¹¹⁻¹⁴. Moreover, Impella treatment with a single insertion throughout the perioperative period can avoid the need for device replacement, thus reducing the duration of myocardial ischemia and medical costs. However, the size of the Impella device needs to be determined based on the required amount of cardiac support. In the present cases we selected the Impella 2.5 and Impella CP, which could be inserted without artificial blood vessels; however, an Impella 5.0 (maximum flow rate, 5.0 L/min) could have made IS CAB easier, as reported previously¹⁵.

In conclusion, preoperative Impella therapy followed by IS CAB and postoperative Impella therapy may be beneficial for CS cases, although further innovations in Impella stabilization and strict monitoring are required. Incorrect positioning of the Impella during heart positioning can accelerate hemodynamic collapse by interfering with the LV. TEE monitoring and quick correction of any mispositioning are therefore warranted.

Author Contributions: MY wrote the manuscript and prepared the images. YI, KM, MI, and AS revised the manuscript. All authors read and approved the final manuscript.

Acknowledgements: The authors wish to thank FORTE Science Communications (<https://www.forte-science.co.jp/>) for English language editing.

Funding: None.

Conflict of Interest: The authors declare that they have no competing interests.

Declaration of Generative AI and AI-Assisted Technologies in the Writing Process: None.

Availability of Data and Material: Data sharing is not applicable to this article, as no datasets were generated or analyzed during the current study.

References

1. Ohman EM, Zwischenberger BA, Thiele H. left ventricu-

lar support for the management of cardiogenic shock: Sooner may be better. *JACC Cardiovasc Interv.* 2021;14: 1120–2.

2. Ameloot K, B Bastos M, Daemen J, et al. New-generation mechanical circulatory support during high-risk PCI: A cross-sectional analysis. *EuroIntervention.* 2019;15:427–33.
3. Mukherjee D, Ahmed K, Baig K, Patel VM, Darzi A, Athanasiou T. Conversion and safety in off-pump coronary artery bypass: A system failure that needs re-emphasis. *Ann Thorac Surg.* 2011;91:630–9.
4. Agrawal Y, Zoltowska D, Nazroo JR, Halabi AR. Impella-assisted intracoronary lithotripsy of severely calcified left main coronary artery bifurcation for NSTEMI with cardiogenic shock. *Cureus.* 2021;13:e14772.
5. Briceno N, Annamalai SK, Reyelt L, et al. Left ventricular unloading increases the coronary collateral flow index before reperfusion and reduces infarct size in a swine model of acute myocardial infarction. *J Am Heart Assoc.* 2019;8:e013586.
6. Pepino P, Coronella G, Oliviero P, et al. Successful use of the Impella Recover LP 5.0 device for circulatory support during off-pump coronary artery bypass grafting. *Int J Surg Case Rep.* 2014;5:803–5.
7. Upadhyaya VD, Campbell S, Douedi S, Patel I, Asgarian KT, Saybolt MD. Use of Impella CP device in off-pump coronary artery bypass graft surgery. *Int Heart J.* 2021;62: 175–7.
8. Thuijs DJFM, Kappetein AP, Serruys PW, et al. Percutaneous coronary intervention versus coronary artery bypass grafting in patients with three-vessel or left main coronary artery disease: 10-year follow-up of the multicentre randomised controlled SYNTAX trial. *Lancet.* 2019;394: 1325–34.
9. Oryoji A, Kono T, Takagi K, et al. [Effective management with IMPELLA CP® and hypothermia therapy for a case of severe ischemic coronary disease after cardiopulmonary arrest]. *Jpn J Cardiovasc Surg.* 2021;50:256–60. Japanese.
10. George SJ, Kapetanakis EI, Dhadwal K, et al. A three-dimensional echocardiographic comparison of a deep pericardial stitch versus an apical suction device for heart positioning during beating heart surgery. *Eur J Cardiothorac Surg.* 2007;32:604–10.
11. Liu YH, Wang DX, Li LH, et al. The effects of cardiopulmonary bypass on the number of cerebral microemboli and the incidence of cognitive dysfunction after coronary artery bypass graft surgery. *Anesth Analg.* 2009;109:1013–22.
12. Kuwahara G, Tashiro T. Current status of off-pump coronary artery bypass. *Ann Thorac Cardiovasc Surg.* 2020;26: 125–32.
13. Vidotti E, Vidotti LFK, Arruda Tavares CAG, et al. Predicting postoperative atrial fibrillation after myocardial revascularization without cardiopulmonary bypass: A retrospective cohort study. *J Card Surg.* 2019;34:577–82.
14. Gerstein NS, Panikkath PV, Mirrakhimov AE, Lewis AE, Ram H. Cardiopulmonary bypass emergencies and intraoperative issues. *J Cardiothorac Vasc Anesth.* 2022;36: 4505–22.
15. Katahira S, Sugimura Y, Mehdiani A, et al. Coronary artery bypass grafting under sole Impella 5.0 support for patients with severely depressed left ventricular function. *J Artif Organs.* 2022;25:158–62.

(Received, April 10, 2024)

(Accepted, October 30, 2024)

(J-STAGE Advance Publication, June 26, 2025)

Journal of Nippon Medical School has adopted the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (<https://creativecommons.org/licenses/by-nc-nd/4.0/>) for this article. The Medical Association of Nippon Medical School remains the copyright holder of all articles. Anyone may download, reuse, copy, reprint, or distribute articles for non-profit purposes under this license, on condition that the authors of the articles are properly credited.